• Title/Summary/Keyword: Nano-level

Search Result 497, Processing Time 0.031 seconds

An Exploratory Study on the Classification of Nano-tech Companies from the Dynamic Capabilities Perspective (동태적 역량을 기반으로 한 나노기술 기업의 유형 분류 및 분석 모델 개발)

  • Lee, Jong-Woo;Kim, Byung-Keun
    • Journal of Technology Innovation
    • /
    • v.21 no.2
    • /
    • pp.285-317
    • /
    • 2013
  • This paper delineates dynamic capabilities, which can be measured by internal capability and external knowledge, and also, in the shape of dynamic capabilities, bases on that corporate actions are expatiated by fitness and rent of evolutionary perspective. To achieve the goal of this study, classifying types of Nano-technology enterprise and suggesting analytical pattern based on dynamic capabilities, this thesis substantially analyzes how to categorize a type of enterprise and gauge a result through a survey of 359 domestic companies producing goods concerned with Nano-technology. This paper analyzes whether or not the internal capability and external knowledge affect the outcome of a certain enterprise. Moreover, in according to the results of practical analysis, it deducts 2 new variables by applying principal component analysis on four previous variables showing the internal capability and external knowledge. By classifying four types of enterprises with criterion of these two factors based on a relative extent and comparing each typical financial result, this paper suggests that the companies with relatively higher level of the internal capability and external knowledge surpass the lower ones at the financial outcome. Not only this, but also the technology-level analysis shows the same result, the higher capability and knowledge the higher performance. However, the analysis based on the difference of the four types of financial outcomes reveals that technological and evolutionary fitness can determine financial achievement.

  • PDF

Flexible Intelligent Exit Sign Management of Cloud-Connected Buildings

  • Lee, Minwoo;Mariappan, Vinayagam;Lee, Junghoon;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.58-63
    • /
    • 2017
  • Emergencies and disasters can happen any time without any warning, and things can change and escalate very quickly, and often it is swift and decisive actions that make all the difference. It is a responsibility of the building facility management to ensure that a proven evacuation plan in place to cover various worst scenario to handled automatically inside the facility. To mapping out optimal safe escape routes is a straightforward undertaking, but does not necessarily guarantee residents the highest level of protection. The emergency evacuation navigation approach is a state-of-the-art that designed to evacuate human livings during an emergencies based on real-time decisions using live sensory data with pre-defined optimum path finding algorithm. The poor decision on causalities and guidance may apparently end the evacuation process and cannot then be remedied. This paper propose a cloud connected emergency evacuation system model to react dynamically to changes in the environment in emergency for safest emergency evacuation using IoT based emergency exit sign system. In the previous researches shows that the performance of optimal routing algorithms for evacuation purposes are more sensitive to the initial distribution of evacuees, the occupancy levels, and the type and level of emergency situations. The heuristic-based evacuees routing algorithms have a problem with the choice of certain parameters which causes evacuation process in real-time. Therefore, this paper proposes an evacuee routing algorithm that optimizes evacuation by making using high computational power of cloud servers. The proposed algorithm is evaluated via a cloud-based simulator with different "simulated casualties" are then re-routed using a Dijkstra's algorithm to obtain new safe emergency evacuation paths against guiding evacuees with a predetermined routing algorithm for them to emergency exits. The performance of proposed approach can be iterated as long as corrective action is still possible and give safe evacuation paths and dynamically configure the emergency exit signs to react for real-time instantaneous safe evacuation guidance.

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

Warpage Simulation by the CTE mismatch in Blanket Structured Wafer Level 3D packaging

  • Kim, Seong Keol;Jang, Chong-Min;Hwang, Jung-Min;Park, Man-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.168-172
    • /
    • 2013
  • In 3D wafer-stacking technology, one of the major issues is wafer warpage. Especially, The important reason of warpage has been known due to CTE(Coefficient of Thermal Expansion) mismatch between materials. It was too hard to choose how to make the FE model for blanket structured wafer level 3D packaging, because the thickness of each layer in wafer level 3D packaging was too small (micro meter or nano meter scale) comparing with diameter of wafer (6 or 8 inches). In this study, the FE model using the shell element was selected and simulated by the ANSYS WorkBench to investigate effects of the CTE on the warpage. To verify the FE model, it was compared by experimental results.

Cure Characteristics of Naphthalene Type Epoxy Resins for SEMC (Sheet Epoxy Molding Compound) for WLP (Wafer Level Package) Application (WLP(Wafer Level Package)적용을 위한 SEMC(Sheet Epoxy Molding Compounds)용 Naphthalene Type Epoxy 수지의 경화특성연구)

  • Kim, Whan Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • The cure characteristics of three kinds of naphthalene type epoxy resins(NET-OH, NET-MA, NET-Epoxy) with a 2-methyl imidazole(2MI) catalyst were investigated for preparing sheet epoxy molding compound(SEMC) for wafer level package(WLP) applications, comparing with diglycidyl ether of bisphenol-A(DGEBA) and 1,6-naphthalenediol diglycidyl ether(NE-16) epoxy resin. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The NET-OH epoxy resin represented an n-th order cure mechanism as like NE-16 and DGEBA epoxy resins, however, the NET-MA and NET-Epoxy resins showed an autocatalytic cure mechanism. The NET-OH and NET-Epoxy resins showed higher cure conversion rates than DGEBA and NE-16 epoxy resins, however, the lowest cure conversion rates can be seen in the NET-MA epoxy resin. Although the NETEpoxy and NET-MA epoxy resins represented higher cure reaction conversions comparing with DGEBA and NE-16 resins, the NET-OH showed the lowest cure reaction conversions. It can be figured out by kinetic parameter analysis that the lowest cure conversion rates of the NET-MA epoxy resin are caused by lower collision frequency factor, and the lowest cure reaction conversions of the NET-OH are due to the earlier network structures formation according to lowest critical cure conversion.

THERMAL ANALYSES AND VERIFICATION FOR HAUSAT-2 SMALL SATELLITE (HAUSAT-2 소형위성 열해석 검증 및 보드-레벨 열해석)

  • Lee Mi-Hyeon;Kim Dong-Woon;Chang Young-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.1
    • /
    • pp.39-54
    • /
    • 2006
  • HAUSAT-2 is nano satellite with 25kg mass being developed by Space System Research Lab. in Hnakuk Aviation University. This paper addresses HAUSAT-2 small satellite thermal analyses and its verification at satellite system, electronic box, and PCB levels. Thermal model which is used for system-level and box-level thermal analyses was verified and corrected through thermal vacuum/balance test. The new board-level thermal analysis methodology, modelling high-power dissipating EEE parts directly, was proposed. The proposed methodology has been verified with test results.

Cure Properties of Isocyanurate Type Epoxy Resin Systems for FO-WLP (Fan Out-Wafer Level Package) Next Generation Semiconductor Packaging Materials (FO-WLP (Fan Out-Wafer Level Package) 차세대 반도체 Packaging용 Isocyanurate Type Epoxy Resin System의 경화특성연구)

  • Kim, Whan Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.65-69
    • /
    • 2019
  • The cure properties of ethoxysilyl diglycidyl isocyanurate(Ethoxysilyl-DGIC) and ethylsilyl diglycidyl isocyanurate (Ethylsilyl-DGIC) epoxy resin systems with a phenol novolac hardener were investigated for anticipating fan out-wafer level package(FO-WLP) applications, comparing with ethoxysilyl diglycidyl ether of bisphenol-A(Ethoxysilyl-DGEBA) epoxy resin systems. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The isocyanurate type epoxy resin systems represented the higher cure conversion rates comparing with bisphenol-A type epoxy resin systems. The Ethoxysilyl-DGIC epoxy resin system showed the highest cure conversion rates than Ethylsilyl-DGIC and Ethoxysilyl-DGEBA epoxy resin systems. It can be figured out by kinetic parameter analysis that the highest conversion rates of Ethoxysilyl-DGIC epoxy resin system are caused by higher collision frequency factor. However, the cure conversion rate increases of the Ethylsilyl-DGEBA comparing with Ethoxysilyl-DGEBA are due to the lower activation energy of Ethylsilyl-DGIC. These higher cure conversion rates in the isocyanurate type epoxy resin systems could be explained by the improvements of reaction molecule movements according to the compact structure of isocyanurate epoxy resin.

Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress

  • Jeong, Seonghoon;Kim, Hyunsoo;Lee, Sung-Nam
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1879-1883
    • /
    • 2018
  • We analyzed the deep-trap states of GaN/InGaN ultraviolet light-emitting diodes (UV LEDs) before and after electrical stress. After electrical stress, the light output power dropped by 5.5%, and the forward leakage current was increased. The optical degradation mechanism could be explained based on the space-charge-limited conduction (SCLC) theory. Specifically, for the reference UV LED (before stress), two sets of deep-level states which were located 0.26 and 0.52 eV below the conduction band edge were present, one with a density of $2.41{\times}10^{16}$ and the other with a density of $3.91{\times}10^{16}cm^{-3}$. However, after maximum electrical stress, three sets of deep-level states, with respective densities of $1.82{\times}10^{16}$, $2.32{\times}10^{16}cm^{-3}$, $5.31{\times}10^{16}cm^{-3}$ were found to locate at 0.21, 0.24, and 0.50 eV below the conduction band. This finding shows that the SCLC theory is useful for understanding the degradation mechanism associated with defect generation in UV LEDs.

Machine learning modeling and DOE-assisted optimization in synthesis of nanosilica particles via Stöber method

  • Moradi, Hiresh;Atashi, Peyman;Amelirad, Omid;Yang, Jae-Kyu;Chang, Yoon-Young;Kamranifard, Telma
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.387-403
    • /
    • 2022
  • Silica nanoparticles, which have a broad range of sizes and specific surface features, have been used in many industrial applications. This study was conducted to synthesize monodispersed silica nanoparticles directly from tetraethyl orthosilicate (TEOS) with an alkaline catalyst (NH3) based on the sol-gel process and the Stöber method. A central composite design (CCD) is used to build a second-order (quadratic) model for the response variables without requiring a complete three-level factorial experiment. The process was then optimized to achieve the minimum particle size with the lowest concentration of TEOS. Dynamic light scattering and scanning electron microscopy were used to analyze the size, dispersity, and morphology of the synthesized nanoparticles. After optimization, a confirmation test was carried out to evaluate the confidence level of the software prediction. The results revealed that the predicted optimization is consistent with experimental procedures, and the model is significant at the 95% confidence level.

A Study on High Speed Laser Welding by using Scanner and Industrial Robot (스캐너와 산업용 로봇을 이용한 고속 레이저 용접에 관한 연구)

  • Kang, Hee-Shin;Suh, Jeong;Kim, Jong-Su;Kim, Jeng-O;Cho, Taik-Dong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.29-29
    • /
    • 2009
  • On this research, laser welding technology for manufacturing automobile body is studied. Laser welding technology is one of the important technologies used in the manufacturing of lighter, safer automotive bodies at a high level of productivity; the leading automotive manufacturers have replaced spot welding with laser welding in the process of car body assembly. Korean auto manufacturers are developing and applying the laser welding technology using a high output power Nd:YAG laser and a 6-axes industrial robot. On the other hand, the robot-based remote laser welding system was equipped with a long focal laser scanner system in robotic end effect. Laser system, robot system, and scanner system are used for realizing the high speed laser welding system. The remote laser welding system and industrial robotic system are used to consist of robot-based remote laser welding system. The robot-based remote laser welding system is flexible and able to improve laser welding speed compared with traditional welding as spot welding and laser welding. The robot-based remote laser systems used in this study were Trumpf's 4kW Nd:YAG laser (HL4006D) and IPG's 1.6kW Fiber laser (YLR-1600), while the robot systems were of ABB's IRB6400R (payload:120kg) and Hyundai Heavy Industry's HX130-02 (payload:130kg). In addition, a study of quality evaluation and monitoring technology for the remote laser welding was conducted. The welding joints of steel plate and steel plate coated with zinc were butt and lapped joints. The quality testing of the laser welding was conducted by observing the shape of the beads on the plate and the cross-section of the welded parts, analyzing the results of mechanical tension test, and monitoring the plasma intensity and temperature by using UV and IR detectors. Over the past years, Trumf's 4kW Nd:YAG laser and ABB's IRB6400R robot system was used. Nowadays, the new laser source, robot and laser scanner system are used to increase the processing speed and to improve the efficiency of processes. This paper proposes the robot-based remote laser welding system as a means of resolving the limited welding speed and accuracy of conventional laser welding systems.

  • PDF