Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.4.387

Machine learning modeling and DOE-assisted optimization in synthesis of nanosilica particles via Stöber method  

Moradi, Hiresh (Department of Environmental Engineering, Kwangwoon University)
Atashi, Peyman (Research and Development Department, Ghaffari Chemical Industries Corp.)
Amelirad, Omid (Department of Mechanical Engineering, Sharif University of Technology)
Yang, Jae-Kyu (Department of Environmental Engineering, Kwangwoon University)
Chang, Yoon-Young (Department of Environmental Engineering, Kwangwoon University)
Kamranifard, Telma (Research and Development Department, Ghaffari Chemical Industries Corp.)
Publication Information
Advances in nano research / v.12, no.4, 2022 , pp. 387-403 More about this Journal
Abstract
Silica nanoparticles, which have a broad range of sizes and specific surface features, have been used in many industrial applications. This study was conducted to synthesize monodispersed silica nanoparticles directly from tetraethyl orthosilicate (TEOS) with an alkaline catalyst (NH3) based on the sol-gel process and the Stöber method. A central composite design (CCD) is used to build a second-order (quadratic) model for the response variables without requiring a complete three-level factorial experiment. The process was then optimized to achieve the minimum particle size with the lowest concentration of TEOS. Dynamic light scattering and scanning electron microscopy were used to analyze the size, dispersity, and morphology of the synthesized nanoparticles. After optimization, a confirmation test was carried out to evaluate the confidence level of the software prediction. The results revealed that the predicted optimization is consistent with experimental procedures, and the model is significant at the 95% confidence level.
Keywords
design of experiments (DOE); machine learning; nanoparticles; silica; Stober method;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2021), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control., 27(1-2), 101-118. https://doi.org/10.1177/1077546320923930.   DOI
2 Rao, K.S., El-Hami, K., Kodaki, T., Matsushige, K. and Makino, K. (2005), "A novel method for synthesis of silica nanoparticles", J. Colloid. Interf. Sci., 289(1), 125-131. https://doi.org/10.1016/j.jcis.2005.02.019.   DOI
3 Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil Mech. Eng., 21(4), 141. https://doi.org/10.1007/s43452-021-00279-3.   DOI
4 Dai, Z.C., Jiang, Z.Y., Zhang, L. and Habibi, M. (2021c), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv Nano Res. 10(2), 175-189. https://doi.org/10.12989/anr.2021.10.2.175.   DOI
5 Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-295. https://doi.org/10.12989/ANR.2020.9.4.295.   DOI
6 Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst. Signal Proc., 165, 108373. https://doi.org/10.1016/j.ymssp.2021.108373.   DOI
7 Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.   DOI
8 Xu, X., Wang, C. and Zhou, P. (2021), "GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective", Int. J. Prod. Econ., 235, 108078. http://doi.org/10.1016/j.ijpe.2021.108078.   DOI
9 Yang, X., Liu, X., Zhang, A., Lu, D., Li, G., Zhang, Q., Liu, Q. and Jiang, G. (2019), "Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning", Nature Commun., 10(1), 1-9. https://doi.org/10.1038/s41467-019-09629-5.   DOI
10 Zhang, X., Tang, Y., Zhang, F. and Lee, C.S. (2016), "A novel aluminum-graphite dual-ion battery", Adv. Energy Mater., 6(11), 1502588. https://doi.org/10.1002/aenm.201502588.   DOI
11 Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyousef, R. (2021a), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.   DOI
12 Lee, K., Look, J.L., Harris, M.T. and McCormick, A.V. (1997), "Assessing extreme models of the Stober synthesis using transients under a range of initial composition", J. Colloid Interf. Sci., 194(1), 78-88. https://doi.org/10.1006/jcis.1997.5089.   DOI
13 Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A. and Selmi, A. (2021a), "An intelligent computer method for vibration responses of the spinning multi-layer symmetric nanosystem using multi-physics modeling", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01433-4.   DOI
14 Giesche, H. (1994), "Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics", J. Eur. Ceram. Soc., 14(3), 189-204. https://doi.org/10.1016/0955-2219(94)90087-6.   DOI
15 Green, D.L., Lin, J.S., Lam, Y.F., Hu, M.Z.C., Schaefer, D.W. and Harris, M.T. (2003), "Size, volume fraction, and nucleation of Stober silica nanoparticles", J. Colloid Interf. Sci., 266(2), 346-358. https://doi.org/10.1016/s0021-9797(03)00610-6.   DOI
16 Guo, S. and Wang, E. (2011), "Functional micro/nanostructures: Simple synthesis and application in sensors, fuel cells, and gene delivery", Accounts Chem. Res., 44(7), 491-500. https://doi.org/10.1021/AR200001M.   DOI
17 Hashemi, H.R., Alizadeh, A.A., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2021), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Wave. Random Complex Med., 31(6), 1340-1366. https://doi.org/10.1080/17455030.2019.1662968.   DOI
18 Liu, H., Shen, S., Oslub, K., Habibi, M. and Safarpour, H. (2021a), "Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01316-8.   DOI
19 Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.   DOI
20 Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2021), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 37(4), 3629-3648. https://doi.org/10.1007/s00366-020-01024-9.   DOI
21 Kim, J.W., Kim, L.U. and Kim, C.K. (2007), "Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites", Biomacromolecules, 8(1), 215-222. https://doi.org/10.1021/bm060560b.   DOI
22 Li, B., Xiao, G., Lu, R., Deng, R. and Bao, H. (2020a), "On feasibility and limitations of detecting false data injection attacks on power grid state estimation using D-facts devices", IEEE T. Ind. Inform., 16(2), 854-864. https://doi.org/10.1109/TII.2019.2922215.   DOI
23 Li, J., Tang, F. and Habibi, M. (2020b), "Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01110-y.
24 Li, Y., Macdonald, D.D., Yang, J., Qiu, J. and Wang, S. (2020d), "Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics", Corros. Sci., 163, 108280. https://doi.org/10.1016/j.corsci.2019.108280.   DOI
25 Kim, S. and Zukoski, C.F. (1990), "A model of growth by hetero-coagulation in seeded colloidal dispersions", J. Colloid Interf. Sci., 139(1), 198-212. https://doi.org/10.1016/0021-9797(90)90457-Y.   DOI
26 Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021c), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Wave. Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1948627.   DOI
27 Liu, J., Qiao, S. Z., Liu, H., Chen, J., Orpe, A., Zhao, D. and Lu, G.Q. (2011), "Extension of the Stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres", Angewandte Chemie, 50(26), 5947-5951. https://doi.org/10.1002/ANIE.201102011.   DOI
28 Guo, Y., Mi, H. and Habibi, M. (2021b), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst. Signal Proc., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.   DOI
29 Harris, M.T., Brunson, R.R. and Byers, C.H. (1990), "The base-catalyzed hydrolysis and condensation reactions of dilute and concentrated TEOS solutions", J. Non Cryst. Solids, 121(1), 397-403. https://doi.org/10.1016/0022-3093(90)90165-I.   DOI
30 Shi, X., Li, J. and Habibi, M. (2020), "On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow", Mech. Based Des. Struct., 1-37. https://doi.org/10.1080/15397734.2020.1772088.
31 Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021c), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-021-01454-z.   DOI
32 Liu, Z., Wu, X., Yu, M. and Habibi, M. (2020b), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544.   DOI
33 Ma, L., Liu, X. and Moradi, Z. (2021a), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9.   DOI
34 Liu, Z., Su, S., Xi, D. and Habibi, M. (2020a), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1784201.   DOI
35 Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv Nano Res. 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.   DOI
36 Lee, K., Sathyagal, A.N. and McCormick, A.V. (1998), "A closer look at an aggregation model of the Stober process", Colloid Surfaces A, 144(1), 115-125. https://doi.org/10.1016/S0927-7757(98)00566-4.   DOI
37 Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020c), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
38 Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.W., Habibi, M. and Safarpour, M. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct., 1-24. https://doi.org/10.1080/15397734.2020.1744005.
39 Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1.   DOI
40 Polte, J. (2015), "Fundamental growth principles of colloidal metal nanoparticles - a new perspective", Cryst. Eng. Comm., 17(36), 6809-6830. https://doi.org/10.1039/C5CE01014D.   DOI
41 Costa, C.A.R., Leite, C.A.P. and Galembeck, F. (2003), "Size dependence of Stober silica nanoparticle microchemistry", J. Phys. Chem. B, 107(20), 4747-4755. https://doi.org/10.1021/jp027525t.   DOI
42 Curley, R., Holmes, J.D. and Flynn, E.J. (2021), "Can sustainable, monodisperse, spherical silica be produced from biomolecules? A review", Appl. Nanosci., 11(6), 1777-1804. https://doi.org/10.1007/s13204-021-01869-6.   DOI
43 Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021a), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano. Res., 10(2), 175-175. https://doi.org/10.12989/ANR.2021.10.2.175.   DOI
44 Matsoukas, T. and Gulari, E. (1988), "Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate", J. Colloid Interf. Sci., 124(1), 252-261. https://doi.org/10.1016/0021-9797(88)90346-3.   DOI
45 Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L.K. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(1), 2050010. https://doi.org/10.1142/s1758825120500106.   DOI
46 Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Wave. Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1926572.   DOI
47 Oyarhossein, M.A., Alizadeh, A.A., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Sci. Rep., 10(1), 5616. https://doi.org/10.1038/s41598-020-61855-w.   DOI
48 Ma, Z., Zheng, W., Chen, X. and Yin, L. (2021b), "Joint embedding VQA model based on dynamic word vector", Peer J. Comput. Sci., 7, e353. https://doi.org/10.7717/peerj-cs.353.   DOI
49 Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.   DOI
50 Nezadi, M., Keshvari, H. and Yousefzadeh, M. (2021), "Using Taguchi design of experiments for the optimization of electrospun thermoplastic polyurethane scaffolds", Adv. Nano Res., 10(1), 59-69. https://doi.org/10.12989/anr.2021.10.1.059.   DOI
51 Prabha, S., Durgalakshmi, D., Rajendran, S. and Lichtfouse, E. (2021), "Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: A review", Environ. Chem. Lett., 19(2), 1667-1691. https://doi.org/10.1007/S10311-020-01123-5.   DOI
52 Rahman, I.A., Vejayakumaran, P., Sipaut, C.S., Ismail, J., Bakar, M.A., Adnan, R. and Chee, C.K. (2007), "An optimized sol-gel synthesis of stable primary equivalent silica particles", Colloid Surfaces A, 1-3(294), 102-110. https://doi.org/10.1016/J.COLSURFA.2006.08.001.   DOI
53 Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2021), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 37(4), 3359-3374. https://doi.org/10.1007/s00366-020-01002-1.   DOI
54 Zhang, T., Wu, X., Shaheen, S.M., Abdelrahman, H., Ali, E.F., Bolan, N.S., Ok, Y.S., Li, G., Tsang, D.C.W. and Rinklebe, J. (2022), "Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes", J. Hazard. Mater., 425, 127906. https://doi.org/10.1016/j.jhazmat.2021.127906.   DOI
55 Qiao, G., Ding, L., Zhang, L. and Yan, H. (2021), "Accessible tourism: A bibliometric review (2008-2020)", Tourism Review. https://doi.org/10.1108/TR-12-2020-0619.   DOI
56 Moayedi, H., Darabi, R., Ghabussi, A., Habibi, M. and Foong, L.K. (2020b), "Weld orientation effects on the formability of tailor welded thin steel sheets", Thin Wall. Struct., 149, 106669. https://doi.org/10.1016/j.tws.2020.106669.   DOI
57 Jiao, J., Ghoreishi, S.M., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01391-x.   DOI
58 Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M.O. and Issakhov, A. (2021b), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-021-01419-2.   DOI
59 Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.W. and Nabipour, N. (2021), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomol. Struct. Dyn., 39(7), 2543-2554. https://doi.org/10.1080/07391102.2020.1751297.   DOI
60 Peng, D., Chen, S., Darabi, R., Ghabussi, A. and Habibi, M. (2021), "Prediction of the bending and out-of-plane loading effects on formability response of the steel sheets", Arch. Civil Mech. Eng., 21(2), 74. https://doi.org/10.1007/s43452-021-00227-1.   DOI
61 Shah, A.H. and Rather, M.A. (2021), "Pharmaceutical residues: New emerging contaminants and their mitigation by nano-photocatalysis", Adv. Nano Res., 10(4), 397-414. https://doi.org/10.12989/anr.2021.10.4.397.   DOI
62 Zhu, H., Zhu, J., Zhang, Z. and Zhao, R. (2021), "Crossover from linear chains to a honeycomb network for the nucleation of hexagonal boron nitride grown on the Ni(111) surface", J. Phys. Chem. C, 125(48), 26542-26551. https://doi.org/10.1021/acs.jpcc.1c09334.   DOI
63 de Moraes, A.C.P., Ribeiro, L.D.S., de Camargo, E.R. and Lacava, P.T. (2021), "The potential of nanomaterials associated with plant growth-promoting bacteria in agriculture", 3 Biotech., 11(7), 318. https://doi.org/10.1007/s13205-021-02870-0.   DOI
64 He, S., Guo, F., Zou, Q. and Bioinformatics, H.J.C. (2020), "MRMD2.0: A python tool for machine learning with feature ranking and reduction", 15, 1-9. http://doi.org/10.2174/1574893615999200503030350.   DOI
65 Ways, M.T.M., Ng, K.W., Lau, W.M. and Khutoryanskiy, V.V. (2020), "Silica nanoparticles in transmucosal drug delivery", Pharmaceutics, 12(8), 1-25. https://doi.org/10.3390/pharmaceutics12080751.   DOI
66 van Blaaderen, A. and Kentgens, A.P.M. (1992), "Particle morphology and chemical microstructure of colloidal silica spheres made from alkoxysilanes", J. Non Cryst. Solid., 149(3), 161-178. https://doi.org/10.1016/0022-3093(92)90064-q.   DOI
67 Han, Y., Lu, Z., Teng, Z., Liang, J., Guo, Z., Wang, D., Han, M.Y. and Yang, W. (2017), "Unraveling the growth mechanism of silica particles in the Stober method: In situ seeded growth model", Langmuir, 33(23), 5879-5890. https://doi.org/10.1021/acs.langmuir.7b01140.   DOI
68 He, X., Ding, J., Habibi, M., Safarpour, H. and Safarpour, M. (2021), "Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate", Thin Wall. Struct., 166, 108019. https://doi.org/10.1016/j.tws.2021.108019.   DOI
69 Aelion, R., Loebel, A. and Eirich, F. (1950), "Hydrolysis of Ethyl Silicate*", J. Am. Chem. Soc., 72(12), 5705-5712. https://doi.org/10.1021/ja01168a090.   DOI
70 Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B. and Varoquaux, G. (2014), "Machine learning for neuroimaging with scikit-learn", Front. Neuroinform., 8, 14. https://doi.org/10.3389/fninf.2014.00014.   DOI
71 Altintas, C., Altundal, O.F., Keskin, S. and Yildirim, R. (2021), "Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation", J. Chem. Inf. Model., 61(5), 2131-2146. https://doi.org/10.1021/acs.jcim.1c00191.   DOI
72 Arani, A.G., Farazin, A. and Mohammadimehr, M. (2021), "The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research", Adv. Nano Res. 10(4), 327-337. https://doi.org/10.12989/ANR.2021.10.4.327.   DOI
73 Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021a), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.   DOI
74 Hiszpanski, A.M., Gallagher, B., Chellappan, K., Li, P., Liu, S., Kim, H., Han, J., Kailkhura, B., Buttler, D.J. and Han, T.Y. (2020), "Nanomaterial synthesis insights from machine learning of scientific articles by extracting, structuring, and visualizing knowledge", J. Chem. Inf. Model., 60(6), 2876-2887. https://doi.org/10.1021/acs.jcim.0c00199.   DOI
75 Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.   DOI
76 Hu, J., Zhang, H., Li, Z., Zhao, C., Xu, Z. and Pan, Q. (2021), "Object traversing by monocular UAV in outdoor environment", Asian J. Control., 23(6), 2766-2775. https://doi.org/10.1002/asjc.2415.   DOI
77 Abulateefeh, S.R., Spain, S.G., Aylott, J.W., Chan, W.C., Garnett, M.C. and Alexander, C. (2011), "Thermoresponsive polymer colloids for drug delivery and cancer therapy", Macromol. Biosci., 11(12), 1722-1734. https://doi.org/10.1002/mabi.201100252.   DOI
78 Acar, P. (2020), "Machine learning reinforced crystal plasticity modeling under experimental uncertainty", AIAA J., 58(8), 3569-3576. https://doi.org/10.2514/1.J059233   DOI
79 Al-Furjan, M.S.H., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2021), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 255, 112990. https://doi.org/10.1016/j.compstruct.2020.112990.   DOI
80 Bailey, J.K. and Mecartney, M.L. (1992), "Formation of colloidal silica particles from alkoxides", Colloid Surf., 63(1), 151-161. https://doi.org/10.1016/0166-6622(92)80081-C.   DOI
81 Boukari, H., Lin, J.S. and Harris, M.T. (1997), "Probing the dynamics of the silica nanostructure formation and growth by SAXS", Chem. Mater., 9(11), 2376-2384. https://doi.org/10.1021/cm9702878.   DOI
82 Cerbelaud, M., Videcoq, A., Rossignol, F., Piechowiak, M.A., Bochicchio, D. and Ferrando, R. (2016), "Heteroaggregation of ceramic colloids in suspensions", Adv. Physi X, 2(1), 35-53. https://doi.org/10.1080/23746149.2016.1254064.   DOI
83 Crowson, M.G., Lin, V., Chen, J.M. and Chan, T.C.Y. (2020), "Machine learning and cochlear implantation-a structured review of opportunities and challenges", Otol. Neurotol., 41(1), e36-e45. https://doi.org/10.1097/MAO.0000000000002440.   DOI
84 Dickinson, E. (2015), "Colloids in food: Ingredients, structure, and stability", Ann. Rev. Food Sci. Technol., 6, 211-233. https://doi.org/10.1146/annurev-food-022814-015651.   DOI
85 Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020b), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
86 van Blaaderen, A., Van Geest, J. and Vrij, A. (1992), "Monodisperse colloidal silica spheres from tetraalkoxysilanes: Particle formation and growth mechanism", J. Colloid Interf. Sci., 154(2), 481-501. https://doi.org/10.1016/0021-9797(92)90163-g.   DOI
87 van Helden, A.K., Jansen, J.W. and Vrij, A. (1981), "Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents", J. Colloid Interf. Sci., 81(2), 354-368. https://doi.org/10.1016/0021-9797(81)90417-3.   DOI
88 Wang, T., Liu, W., Zhao, J., Guo, X. and Terzija, V. (2020a), "A rough set-based bio-inspired fault diagnosis method for electrical substations", Int. J. Electr. Power., 119, 105961. https://doi.org/10.1016/j.ijepes.2020.105961.   DOI
89 Cao, B., Adutwum, L.A., Oliynyk, A.O., Luber, E.J., Olsen, B.C., Mar, A. and Buriak, J.M. (2018), "How to optimize materials and devices via design of experiments and machine learning: Demonstration using organic photovoltaics", ACS Nano, 12(8), 7434-7444. https://doi.org/10.1021/acsnano.8b04726.   DOI
90 Wu, J. and Habibi, M. (2021), "Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01396-6.   DOI
91 Klemperer, W.G., Mainz, V.V. and Millar, D.M. (1986), "A solid state multinuclear magnetic resonance study of the sol-gel process using polysilicate precursors", MRS Online Proceedings Library, 73(1), 15-25. https://doi.org/10.1557/PROC-73-15.   DOI
92 LaMer, V.K. and Dinegar, R.H. (1950), "Theory, production and mechanism of formation of monodispersed hydrosols", J. Am. Chem. Soc., 72(11), 4847-4854. https://doi.org/10.1021/ja01167a0011.   DOI
93 Amelirad, O. and Assempour, A. (2019), "Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets", J. Manuf. Proc., 47, 310-323. https://doi.org/10.1016/j.jmapro.2019.09.035.   DOI
94 Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021b), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599.   DOI
95 Ghazanfari, A., Soleimani, S.S., Keshavarzzadeh, M., Habibi, M., Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Based Des. Struct., 48(6), 755-772. https://doi.org/10.1080/15397734.2019.1662310.   DOI
96 Stober, W., Fink, A. and Bohn, E. (1968), "Controlled growth of monodisperse silica spheres in the micron size range", J. Colloid Interf. Sci., 26(1), 62-69. https://doi.org/10.1016/0021-9797(68)90272-5.   DOI
97 Sun, J., Wang, Y., Liu, S., Dehghani, A., Xiang, X., Wei, J. and Wang, X. (2021), "Mechanical, chemical and hydrothermal activation for waste glass reinforced cement", Constr. Build. Mater., 301, 124361. https://doi.org/10.1016/j.conbuildmat.2021.124361.   DOI
98 Alipour, M., Torabi, M.A., Sareban, M., Lashini, H., Sadeghi, E., Fazaeli, A., Habibi, M. and Hashemi, R. (2020), "Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels", Mech. Based Des. Struct., 48(5), 525-541. https://doi.org/10.1080/15397734.2019.1633343.   DOI
99 Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021c), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.   DOI
100 Huo, J., Zhang, G., Ghabussi, A. and Habibi, M. (2021), "Bending analysis of FG-GPLRC axisymmetric circular/annular sector plates by considering elastic foundation and horizontal friction force using 3D-poroelasticity theory", Compos. Struct., 276, 114438. https://doi.org/10.1016/j.compstruct.2021.114438.   DOI
101 Amelirad, O. and Assempour, A. (2021), "Coupled continuum damage mechanics and crystal plasticity model and its application in damage evolution in polycrystalline aggregates", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01346-2.   DOI
102 Bai, B., Nie, Q., Zhang, Y., Wang, X. and Hu, W. (2021), "Cotransport of heavy metals and SiO2 particles at different temperatures by seepage", J. Hydrol., 597, 125771. https://doi.org/10.1016/j.jhydrol.2020.125771.   DOI
103 Tan, C.G., Bowen, B.D. and Epstein, N. (1987), "Production of monodisperse colloidal silica spheres: Effect of temperature", J. Colloid Interf. Sci., 118(1), 290-293. https://doi.org/10.1016/0021-9797(87)90458-9.   DOI
104 Tian, H., Wang, T., Zhang, F., Zhao, S., Wan, S., He, F. and Wang, G. (2018), "Tunable porous carbon spheres for high-performance rechargeable batteries", J. Mater. Chem. A., 6(27), 12816-12841. https://doi.org/10.1039/C8TA02353K.   DOI
105 Bergna, H.E. (2005), "The language of colloid science and silica chemistry", Colloid. Silica., 5-7. https://doi.org/10.1201/9781420028706-6.   DOI
106 Ebrahimi, F., Mohammadi, K., Barouti, M.M. and Habibi, M. (2021), "Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell", Wave. Random Complex Med., 31(6), 1655-1681. https://doi.org/10.1080/17455030.2019.1694729.   DOI
107 Everett, D.H. (1972), "Manual of Symbols and Terminology for Physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry", Pure Appl. Chem., 31(4), 577-638. https://doi.org/10.1351/pac197231040577.   DOI
108 Zhang, X., Shamsodin, M., Wang, H., NoormohammadiArani, O., Khan, A.M., Habibi, M. and Al-Furjan, M.S.H. (2021b), "Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory", J. Biomol. Struct. Dyn., 39(9), 3128-3143. https://doi.org/10.1080/07391102.2020.1760939.   DOI
109 Svirbely, W.J. and Mador, I.L. (1950), "Kinetics of the alkaline hydrolysis of monoethyl malonate ion", J. Am. Chem. Soc., 72(12), 5699-5705. https://doi.org/10.1021/JA01168A089.   DOI
110 Bai, Y., Alzahrani, B., Baharom, S. and Habibi, M. (2020), "Semi-numerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-020-01191-9.   DOI
111 Fu, H., Gao, B., Hu, C., Liu, Z., Hu, L., Kan, J., Feng, Z. and Xing, P. (2021), "3D nitrogen-doped graphene created by the secondary intercalation of ethanol with enhanced specific capacity", Nanotechnology, 33(7). https://doi.org/10.1088/1361-6528/ac30c2.   DOI
112 Feng, T., Liu, N., Wang, S.J., Qin, C., Shi, S.W., Zeng, X.Y. and Liu, G. (2021), "Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: A review", Adv. Nano. Res., 10(6), 559-576. https://doi.org/10.12989/anr.2021.10.6.559.   DOI
113 Fhionnlaoich, N.M., Yang, Y., Qi, R., Galvanin, F. and Guldin, S. (2019), "DoE-It-Yourself: A case study for implementing design of experiments into nanoparticle synthesis", Chem. Eng. Ind. Chem., 2019. https://doi.org/10.26434/chemrxiv.8198420.v1.   DOI
114 Finnie, K.S., Bartlett, J.R., Barbe, C.J. and Kong, L. (2007), "Formation of silica nanoparticles in microemulsions", Langmuir, 23(6), 3017-3024. https://doi.org/10.1021/la0624283.   DOI
115 Fuertes, A.B., Valle-Vigon, P. and Sevilla, M. (2012), "One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules", Chem. Commun., 48(49), 6124-6126. https://doi.org/10.1039/c2cc32552g.   DOI
116 Jinnouchi, R. and Asahi, R. (2017), "Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm", J. Phys. Chem. Lett., 8(17), 4279-4283. https://doi.org/10.1021/acs.jpclett.7b02010.   DOI
117 Bogush, G.H. and Zukoski, C.F. (1991), "Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides", J. Colloid Interf. Sci., 142(1), 1-18. https://doi.org/10.1016/0021-9797(91)90029-8.   DOI
118 Carcouet, C.C., van de Put, M.W., Mezari, B., Magusin, P.C., Laven, J., Bomans, P.H., Friedrich, H., Esteves, A.C., Sommerdijk, N.A., van Benthem, R.A. and de With, G. (2014), "Nucleation and growth of monodisperse silica nanoparticles", Nano Lett., 14(3), 1433-1438. https://doi.org/10.1021/nl404550d.   DOI
119 Jiang, S., Dyk, A.V., Maurice, A., Bohling, J., Fasano, D. and Brownell, S. (2017), "Design colloidal particle morphology and self-assembly for coating applications", Chem. Soc. Rev., 46(12), 3792-3807. https://doi.org/10.1039/C6CS00807K.   DOI
120 Khademolhosseini, R., Jafari, A., Mousavi, S.M. and Manteghian, M. (2019), "Investigation of synergistic effects between silica nanoparticles, biosurfactant and salinity in simultaneous flooding for enhanced oil recovery", RSC Adv., 9(35), 20281-20294. https://doi.org/10.1039/C9RA02039J.   DOI
121 Khezri, K., Saeedi, M. and Maleki Dizaj, S. (2018), "Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations", Biomed. Pharmacother., 106 1499-1505. https://doi.org/10.1016/J.BIOPHA.2018.07.084.   DOI
122 Xiong, Q.M., Chen, Z., Huang, J.T., Zhang, M., Song, H., Hou, X.F., Li, X.B. and Feng, Z.J. (2020), "Preparation, structure and mechanical properties of Sialon ceramics by transition metal-catalyzed nitriding reaction", Rare Metals. 39(5), 589-596. https://doi.org/10.1007/s12598-020-01385-6.   DOI