• 제목/요약/키워드: Nano-bio technology

검색결과 534건 처리시간 0.025초

Nano Bio Imaging for NT and BT

  • Moon, DaeWon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.51.2-51.2
    • /
    • 2015
  • Understanding interfacial phenomena has been one of the main research issues not only in semiconductors but only in life sciences. I have been trying to meet the atomic scale surface and interface analysis challenges from semiconductor industries and furthermore to extend the application scope to biomedical areas. Optical imaing has been most widely and successfully used for biomedical imaging but complementary ion beam imaging techniques based on mass spectrometry and ion scattering can provide more detailed molecular specific and nanoscale information In this presentation, I will review the 27 years history of medium energy ion scattering (MEIS) development at KRISS and DGIST for nanoanalysis. A electrostatic MEIS system constructed at KRISS after the FOM, Netherland design had been successfully applied for the gate oxide analysis and quantitative surface analysis. Recenlty, we developed time-of-flight (TOF) MEIS system, for the first time in the world. With TOF-MEIS, we reported quantitative compositional profiling with single atomic layer resolution for 0.5~3 nm CdSe/ZnS conjugated QDs and ultra shallow junctions and FINFET's of As implanted Si. With this new TOF-MEIS nano analysis technique, details of nano-structured materials could be measured quantitatively. Progresses in TOF-MEIS analysis in various nano & bio technology will be discussed. For last 10 years, I have been trying to develop multimodal nanobio imaging techniques for cardiovascular and brain tissues. Firstly, in atherosclerotic plaque imaging, using, coherent anti-stokes raman scattering (CARS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) multimodal analysis showed that increased cholesterol palmitate may contribute to the formation of a necrotic core by increasing cell death. Secondly, surface plasmon resonance imaging ellipsometry (SPRIE) was developed for cell biointerface imaging of cell adhesion, migration, and infiltration dynamics for HUVEC, CASMC, and T cells. Thirdly, we developed an ambient mass spectrometric imaging system for live cells and tissues. Preliminary results on mouse brain hippocampus and hypotahlamus will be presented. In conclusions, multimodal optical and mass spectrometric imaging privides overall structural and morphological information with complementary molecular specific information, which can be a useful methodology for biomedical studies. Future challenges in optical and mass spectrometric imaging for new biomedical applications will be discussed.

  • PDF

Qualitative comparison of chemical and green synthesized Fe3O4 nanoparticles

  • Gokila, V.;Perarasu, V.T.;Rufina, R. Delma Jones
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.71-76
    • /
    • 2021
  • Synthesis of nanoparticles using green technology using plants is gaining significant attention as it is an environmentally friendly substitute to conventional physical and chemical methods. The present study was focused on the chemical and green synthesis of Iron Oxide nanoparticles from ferric chloride. The green synthesis was achieved by utilizing the bio components of Hibiscus rosa-sinensis. The Fe3O4 nanoparticles with the size range of 87-400 nm were synthesized by wet chemical reduction technique which are unstable, prone to aggregation while in green synthesis the phytochemicals present in the leaf extract acts as the capping as well as the reducing agent thus the green synthesized iron (III) oxide nanoparticles were naturally stabilized, spherical shaped and are in the size range of 2-80 nm. The results of both the protocols are compared and presented briefly.

신축성 전자소자를 위한 신축성 전극 및 스트레인 센서 개발 동향 (Technology of Stretchable Interconnector and Strain Sensors for Stretchable Electronics)

  • 박진영;이원재;남현진;좌성훈
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.25-34
    • /
    • 2018
  • In this paper, we review the latest technical progress and commercialization of stretchable interconnectors, stretchable strain sensors, and stretchable substrates for stretchable electronics. The development of stretchable electronics can pave a way for new applications such as wearable devices, bio-integrated devices, healthcare and monitoring, and soft robotics. The essential components of stretchable electronic devices are stretchable interconnector and stretchable substrate. Stretchable interconnector should have high stretchability and high electrical conductivity as well as stability under severe mechanical deformation. Therefore several nanocomposite-based materials using CNT, graphene, nanowire, and metal flake have been developed. Geometric engineering such as wavy, serpentine, buckled and mesh structure has been well developed. Stretchable substrate should also pose high stretchability and compatibility with stretchable sensing or interconnecting material. We summarize the recent research results of new materials for stretchable interconnector and substrate as well as strain sensors. The Important challenges in development of the stretchable interconnector and substrate are also briefly discussed.

Liquid Crystal-based Imaging of Enzymatic Reactions at Aqueous-liquid Crystal Interfaces Decorated with Oligopeptide Amphiphiles

  • Hu, Qiongzheng;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1262-1266
    • /
    • 2010
  • In this study, we investigated the use of liquid crystals to selectively detect the activity of enzymes at interfaces decorated with oligopeptide-based membranes. We prepared a mixed monolayer of tetra(ethylene glycol)-terminated lipids and carboxylic acid-terminated lipids at the aqueous-liquid crystal (LC) interface. The 17 amino-acid oligopeptide SNFKTIYDEANQFATYK was then immobilized onto this mixed monolayer through N-hydroxysuccinimide-activation of the carboxylic acid groups. We examined the orientational behavior of nematic 4-cyano-4'-pentylbiphenyl (5CB) after conjugation of the 17 amino-acid oligopeptide with the mixed monolayer assembled at the interface. Immobilization of the oligopeptide caused orientational transitions in 5CB, with a change from homeotropic (perpendicular) to tilted alignment, which was primarily due to the reorganization of the monolayer. The orientation of the 5CB molecules returned to its homeotropic state after contacting the interface containing ${\alpha}$-chymotrypsin, which can cleave the immobilized oligopeptide. Control experiments confirmed that the enzymatic activity of ${\alpha}$-chymotrypsin triggered the ordering transitions in the LC. These results suggest that the LC can provide a facile method for selective detection of enzymatic activity.

Yeast cell surface display of cellobiohydrolase I

  • Lee, Sun-Kyoung;Suh, Chang-Woo;Hwang, Sun-Duk;Kang, Whan-Koo;Lee, Eun-Kyu
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.468-472
    • /
    • 2003
  • Recently, genetic engineering techniques have been used to display various heterologous peptides and proteins (enzyme, antibody, antigen, receptor and fluorescence protein, etc.) on the yeast cell surface. Living cells displaying various enzymes on their surface could be used repeatedly as 'whole cell biocatalysts' like immobilized enzymes. We constructed a yeast based whole cell biocatalyst displaying T. reesei cellobiohydrolase I (CBH I ) on the cell surface and endowed the yeast-cells with the ability to degrade cellulose. By using a cell surface engineering system based on ${\alpha}-agglutinin,$ CBH I was displayed on the cell surface as a fusion protein containing the N-terminal leader peptide encoding a Gly-Ser linker and the $Xpress^{TM}$ epitope. Localization of the fusion protein on the cell surface was confirmed by confocal microscopy. In this study, we report on the genetic immobilization of T. reesei CBH I on the S. cerevisiae and hydrolytic activity of cell surface displayed CBH I.

  • PDF

TiO2 나노입자를 함유한 PLA 필름의 탈취성과 항균성 (The Deodorization and Antibacterial Activities of PLA Films Embedded with TiO2 Nanoparticles)

  • 구광회;장진호
    • 한국염색가공학회지
    • /
    • 제20권6호
    • /
    • pp.1-7
    • /
    • 2008
  • The effects of $TiO_2$ contents and UV irradiation treatment on the surface properties of PLA films embedded with $TiO_2$ nanoparticle were investigated. Whereas UV irradiation decreased reflectance of the treated PLA films proportionally with increasing UV energy, the reflectance of PLA/$TiO_2$ films increased with increasing UV energy. The UV irradiation treatment caused PLA/$TiO_2$ blend films more polar as indicated in the generation of new carbonyl group and decrease in zeta potentials, which was more pronounced with the introduction of $TiO_2$. Upon UV irradiation, $TiO_2$ particles appeared on the film surface as observed in SEM images. The PLA/$TiO_2$ blend films showed photocatalytic properties such as photobleaching of methylene blue, deodorization of ammonia and antimicrobial activity in comparison with pure PLA films.

Observation of Peptide-Ion Generation by Laser-Induced Surface Heating from Tungsten Silicide Surfaces

  • Kim, Shin-Hye;Park, Sun-Hwa;Song, Jae-Yong;Han, Sang-Yun
    • Mass Spectrometry Letters
    • /
    • 제3권1호
    • /
    • pp.18-20
    • /
    • 2012
  • We report observation of laser desorption/ionization (LDI) of peptides from flat surfaces of tungsten silicide ($WSi_2$). In contrast to MALDI (matrix-assisted laser desorption/ionization) and SALDI (surface-assisted laser desorption/ionization) mass spectrometry, this study did not utilize any matrices and surface nanostructures. In this work, LDI on $WSi_2$ surfaces is demonstrated to cover a mass range up to 1,600 Da (somatostatin; monoisotopic mass = 1637.9 Da). In addition, it exhibited a high sensitivity, which could detect peptides, which could detect peptides of low femtomole levels (20 fmol for angiotensin II). The observed LDI process was discussed to be largely thermal, more specifically, due to laser-induced surface heating that is most likely promoted by the low thermal diffusivity (${\kappa}$) of $WSi_2$ substrate.

1,3-Butadiene diepoxide로 가교된 히아루론산 막의 응용 (Application of Hyaluronic Acid Membrane Cross-linked with 1,3-Butadiene Diepoxide)

  • 정성일;한광선;배정은;김인섭
    • 멤브레인
    • /
    • 제18권2호
    • /
    • pp.124-131
    • /
    • 2008
  • 조직공학용 생체 물질로 사용하고자 가교제 1,3-butadiene diepoxide (BD)를 사용하여 락타이드와 가교시킨 히아루론산 막을 제조하였다. 막의 락타이드 및 BD 반응도는 핵자기 공명 분광볍으로 결정하였다. BD 농도가 높을 경우 6%이하의 성장저해 현상이 나타났으나 그 값은 세포 성장에 문제되지 않을 정도로 충분히 낮았다. 가교온도가 낮을수록 탄성 율은 증가하고 팽윤도는 감소하였다. 막의 생분해속도는 가교온도가 낮을수록 감소하였다. 약물방출 실험 결과 가교 온도가 낮을수록 막을 통한 약물 투과는 감소하였다.

반응성 염료를 이용한 양모직물의 광그라프트 염색 (Photo-grafting Dyeing of Wool Fabrics with ${\alpha}$-bromoacrylamide reactive dye)

  • 동위엔위엔;장진호
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2011년도 제44차 학술발표회
    • /
    • pp.31-31
    • /
    • 2011
  • Lanasol dyes containing ${\alpha}$-bromoacrylamide or ${\alpha},{\beta}$-dibromopropionylamide group are used for wool dyeing. They are normally applied to wool under pH 4.5 to 6.5 at $100^{\circ}C$. Although wool fabric can be dyed to obtain deep colour, high light and wet fastness, the dyeing processes need long dyeing time at high temperature, with salt addition, which inevitably causes environmental problems. Grafting is a modification method for textile where monomers are covalently bonded onto the polymer chain. It can be initiated by ozone, ${\gamma}$ rays, electron beams, plasma, corona discharge and UV irradiation. Coloration by UV-induced photografting exhibits several advantages such as fast reaction rate, energy saving, simple equipment, easy exploitation and environmentally friendliness. Also it requires much lower energy compared to the conventional dyeing and less damage to the substrate. In this study, a direct sequential UV-induced photografting onto wool fabrics was discussed. To understand the graft polymerization mechanism further, several characterization methods were used. Moreover, the effects of several principal factors on the graft photopolymerization were investigated. Furthermore, the colorfastness results were compared with conventional dyeing methods.

  • PDF

자외선 조사에 의한 PLA 직물의 광가교 (Photo-crosslinking of PLA Fabrics by UV Irradiation)

  • 윤득원;장진호
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2011년도 제44차 학술발표회
    • /
    • pp.51-51
    • /
    • 2011
  • PLA(Poly(lactic acid))는 옥수수, 사탕수수와 같은 천연재료에서 얻어진 젖산(lactic acid or lactide)을 원료로 하여 합성한 생분해성 고분자로서 석유자원의 고갈과 환경오염에 대한 관심이 고조됨에 따라 합성고분자를 대체할 재료로 각광받고 있다. 일반적인 PLA의 장점으로 투명성, 굽힘강성, 방수성, 가열밀봉성 등이 있으며, 단점으로는 열안정성, 내구성, 충격 강도 등이 있다. PLA를 섬유로 사용될 경우 농림 토목용 생분해성 소재 뿐 아니라 실크의 광택과 뛰어난 드레이프성, 감촉을 갖는 장점이 있다. 또한 수분을 신속하게 흡수하여 발산시키는 특성을 가지고 있고, 낮은 연소열과 가스량, 자기 소화성 등의 방염 특성 등을 지녀 의류 인테리어 소재로 매력적인 특성을 가지고 있다. PLA는 바이오고분자 중 비교적 높은 용융온도를 가지고 있지만 특히 염색 및 가공조건 등 고온 처리에 의해 기계적 강도가 저하되는 단점이 있어 내열성 및 기계적 강도의 향상이 필수적이다. 내열성 및 기계적 강도 향상을 위한 가장 손쉬운 방법은 고분자 사슬을 가교시키는 것으로서 열처리 또는 감마선, 전자선, 자외선 조사를 이용할 수 있는데 열에 의한 가교는 균일한 열전달과 고온이 필요하며 감마선 및 전자선 조사는 설비의 고비용과 방사성 노출 위험으로 인해 비친환경적이다. 따라서 다루기 쉽고 비용이 적게 들고 친환경적인 장점을 가진 자외선 조사법을 이용한 PLA의 광가교의 연구가 필요하다. 본 연구의 목적은 PLA 직물의 열안정성과 기계적 특성을 향상시키기 위해 광개시제와 자외선 조사를 이용하여 PLA 직물의 광가교를 수행하였다.

  • PDF