Browse > Article
http://dx.doi.org/10.5478/MSL.2012.3.1.018

Observation of Peptide-Ion Generation by Laser-Induced Surface Heating from Tungsten Silicide Surfaces  

Kim, Shin-Hye (Center for Nano-Bio Technology, Korea Research Institute of Standards and Science)
Park, Sun-Hwa (Center for Nanocharacterization, Korea Research Institute of Standards and Science)
Song, Jae-Yong (Center for Nanocharacterization, Korea Research Institute of Standards and Science)
Han, Sang-Yun (Center for Nano-Bio Technology, Korea Research Institute of Standards and Science)
Publication Information
Mass Spectrometry Letters / v.3, no.1, 2012 , pp. 18-20 More about this Journal
Abstract
We report observation of laser desorption/ionization (LDI) of peptides from flat surfaces of tungsten silicide ($WSi_2$). In contrast to MALDI (matrix-assisted laser desorption/ionization) and SALDI (surface-assisted laser desorption/ionization) mass spectrometry, this study did not utilize any matrices and surface nanostructures. In this work, LDI on $WSi_2$ surfaces is demonstrated to cover a mass range up to 1,600 Da (somatostatin; monoisotopic mass = 1637.9 Da). In addition, it exhibited a high sensitivity, which could detect peptides, which could detect peptides of low femtomole levels (20 fmol for angiotensin II). The observed LDI process was discussed to be largely thermal, more specifically, due to laser-induced surface heating that is most likely promoted by the low thermal diffusivity (${\kappa}$) of $WSi_2$ substrate.
Keywords
Laser desorption/ionization (LDI); Tungsten silicide ($WSi_2$); Laser-induced surface heating;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Go, E. P.; Apon, J. V.; Luo, G.; Saghatelian, A.; Daniels, R. H.; Sahi, V.; Dubrow, R.; Cravatt, B. F.; Vertes, A.; Siuzdak, G. Anal. Chem. 2005, 77, 1641.   DOI   ScienceOn
2 Walker, B. N.; Razunguzwa, T.; Powell, M.; Knochenmuss, R.; Vertes, A. Angew. Chem. Int. Ed. 2009, 48, 1669.   DOI   ScienceOn
3 Walker, B. N.; Stolee, J. A.; Pickel, D. L.; Retterer, S. T.; Vertes, A. J. Phys. Chem. C. 2010, 114, 4835.   DOI   ScienceOn
4 Nayak, R.; Knapp, D. R. Anal. Chem. 2010, 82, 7772.   DOI   ScienceOn
5 Seino, T.; Sato, H.; Yamamoto, A.; Nemoto, A.; Torimura, M.; Tao, H. Anal. Chem. 2007, 79, 4827.   DOI   ScienceOn
6 Shin, W. J.; Shin, J. H.; Song, J. Y.; Han, S. Y. J. Am. Soc. Mass Spectrom. 2010, 22, 989.
7 Kim, S. H.; Lee, A.; Song, J. Y.; Han, S. Y. J. Am. Soc. Mass Spectrom. 2012 (doi: 10.1007/s13361-012-0355-5)
8 Hsu, N.-Y.; Tseng, S. Y.; Wu, C.-Y.; Ren, C.-T.; Lee, Y.- C.; Wong, C.-H.; Chen, C.-H. Anal. Chem. 2008, 80, 5203.   DOI   ScienceOn
9 Daves, Jr., G. D. Acc. Chem. Res. 1979, 12, 359.   DOI
10 Peterson, D. S. Mass Spectrom. Rev. 2007, 26, 19.   DOI   ScienceOn
11 Wei, J.; Buriak, J. M.; Siuzdak, G. Nature 1999, 399, 243.   DOI   ScienceOn
12 Alimpiev, S.; Nikiforov, S.; Karavanskii, V.; Minton, T.; Sunner, J. J. Chem. Phys. 2001, 115, 1891.   DOI   ScienceOn
13 Northen, T. R.; Yanes, O.; Northen, M. T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S. L.; Nordstrom, A.; Siuzdak, G. Nature 2007, 449, 1033.   DOI   ScienceOn