• 제목/요약/키워드: Nano-Scale Patterning

검색결과 43건 처리시간 0.027초

300 nm Diameter Cylinder-Shape 나노패턴 기판을 이용한 LEDs의 광학적 특성 (Optical Characterization of Light-Emitting Diodes Grown on the Cylinder Shape 300 nm Diameter Patterned Sapphire Substrate)

  • 김상묵;김윤석
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.59-64
    • /
    • 2019
  • This study investigates the optical characteristics of InGaN multiple quantum wells(MQWs) light emitting diodes(LEDs) on planar sapphire substrates(PSSs), nano-sized PSS(NPSS) and micro-sized PSS(MPSS). We obtain the results as the patterning size of the sapphire substrates approach the nanometer scale: The light from the back side of the device increases and the total light extraction becomes larger than the MPSS- and planar-LEDs. The experiment is conducted by Monte Carlo ray-tracing, which is regarded as one of the most suitable ways to simulate light propagation in LEDs. The results show fine consistency between simulation and measurement of the samples with different sized patterned substrates. Notably, light from the back side becomes larger in the NPSS LEDs. We strongly propose that the increase in the light intensity of NPSS LEDs is due to an abnormal optical distribution, which indicates an increase of extraction probability through NPSS.

Micro to Nano-scale Electrohydrodynamic Nano-Inkjet Printing for Printed Electronics: Fundamentals and Solar Cell Applications

  • 변도영
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.3.2-3.2
    • /
    • 2011
  • In recent years, inkjet printing technology has received significant attention as a micro/nanofabrication technique for flexible printing of electronic circuits and solar cells, as well for biomaterial patterning. It eliminates the need for physical masks, causes fewer environment problems, lowers fabrication costs, and offers good layer-to-layer registration. To fulfill the requirements for use in the above applications, however, the inkjet system must meet certain criteria such as high frequency jetting, uniform droplet size, high density nozzle array, etc. Existing inkjet devices are either based on thermal bubbles or piezoelectric pumping; they have several drawbacks for flexible printing. For instance, thermal bubble jetting has limitations in terms of size and density of the nozzle array as well as the ejection frequency. Piezoelectric based devices suffer from poor pumping energy in addition to inadequate ejection frequency. Recently, an electrohydrodynamic (EHD) printing technique has been suggested and proposed as an alternative to thermal bubble or piezoelectric devices. In EHD jetting, a liquid (ink) is pumped through a nozzle and a strong electric field is applied between the nozzle and an extractor plate, which induce charges at the surfaces of the liquid meniscus. This electric field creates an electric stress that stretches the meniscus in the direction of the electric field. Once the electric field force is larger than the surface tension force, a liquid droplet is formed. An EHD inkjet head can produce droplets smaller than the size of the nozzle that produce them. Furthermore, the EHD nano-inkjet can eject high viscosity liquid through the nozzle forming tiny structures. These unique features distinguish EHD printing from conventional methods for sub-micron resolution printing. In this presentation, I will introduce the recent research results regarding the EHD nano-inkjet and the printing system, which has been applied to solar cell or thin film transistor applications.

  • PDF

재사용 가능한 100nm급 패턴의 퀄츠 마스터 제작 및 퀄츠 마스터를 사용한 사출성형실험 (Fabrication of Nanoscale Reusable Quartz Master for Nano Injection Molding Process)

  • 최두선;이준형;유영은;제태진;황경현;서영호
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.228-231
    • /
    • 2005
  • In this paper, we present reusable quartz master fabricated by electron-beam lithography and dry etching process of quartz, and results of injection molding based on the reusable quartz master for the manufacturing of nano-scale information media. Since patterned structures of photoresist can be easily damaged by separation (demolding) process of nickel stamper and master, a master with photoresist cannot be reused in stamper fabrication process. In this work, we have made it possible of the repeated use of master by directly patterning on quart in nickel stamper fabrication process. We have designed and fabricated four different specimens including 100nm, 140nm 200nm and 400nm pit patterns. In addition, both intaglio and embossed carving patterns are fabricated for each specimen. In the preliminary test of injection molding, we have fabricated polycarbonate patterns with varying mold temperature. We have experimentally verified the fabrication process of the reusable quart master and possibility of quartz master as direct stamper.

A Study on the Dip-pen Nanolithography Process and Fabrication of Optical Waveguide for the Application of Biosensor

  • Kim, Jun-Hyong;Yang, Hoe-Young;Yu, Chong-Hee;Lee, Hyun-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권4호
    • /
    • pp.163-168
    • /
    • 2008
  • Photonic crystal structures have been received considerable attention due to their high optical sensitivity. One of the techniques to construct their structure is the dip-pen lithography (DPN) process, which requires a nano-scale resolution and high reliability. In this paper, we propose a two dimensional photonic crystal array to improve the sensitivity of optical biosensor and DPN process to realize it. As a result of DPN patterning test, we have observed that the diffusion coefficient of the mercaptohexadecanoic acid (MHA) molecule ink in octanol is much larger than that in acetonitrile. In addition, we have designed and fabricated optical waveguides based on the mach-zehnder interferometer (MZI) for application to biosensors. The waveguides were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The MZI optical waveguides were measured of the optical characteristics for the application of biosensor.

생산성 향상을 위한 멀티빔 리소그라피 (Multiple Electron Beam Lithography for High Throughput)

  • 최상국;이천희
    • 한국광학회지
    • /
    • 제16권3호
    • /
    • pp.235-238
    • /
    • 2005
  • 생산성 향상을 위하여 정렬된 마이크로칼럼을 이용하여 멀티-전자빔 리소그라피 장치를 개발하였다. 마이크로칼럼은 매우 작은 크기를 가지고 있어 병렬구조로 정렬하여 작동시킬 수 있다. Single Column Module(SCM) 구조의 멀티 전자빔 리소그라피 시스템과 전자칼럼을 제작하여 250 eV에서 300 eV 에너지 범위에서의 저에너지 마이크로칼럼 리소그라피를 성공적으로 수행하였다. 전자방출원에서 방출되는 전자빔의 총 전류가 $0.5\;{\mu}A$일 때, 샘플에서의 전류는 >1 nA으로 측정되었으며 리소그라피 패텅닝에서 사용된 working distance은 $\~1\;mm$였다.

UV 나노임프린트 공정에서의 수지 액적 증발 거동 분석 (Analysis of the Evaporation Behavior of Resin Droplets in UV-Nanoimprint Process)

  • 최두순;김기돈
    • 소성∙가공
    • /
    • 제18권3호
    • /
    • pp.268-273
    • /
    • 2009
  • Ultraviolet nanoimprint lithography (UV-NIL), which is performed at a low pressure and at room temperature, is known as a low cost method for the fabrication of nano-scale patterns. In the patterning process, maintaining the uniformity of the residual layer is critical as the pattern transfer of features to the substrate must include the timed etch of the residual layer prior to the etching of the transfer layer. In pursuit of a thin and uniform residual layer thickness, the initial volume and the position of each droplet both need to be optimized. However, the monomer mixtures of resin had a tendency to evaporate. The evaporation rate depends on not only time, but also the initial volume of the monomer droplet. In order to decide the initial volume of each droplet, the accurate prediction of evaporation behavior is required. In this study, the theoretical model of the evaporation behavior of resin droplets was developed and compared with the available experimental data in the literature. It is confirmed that the evaporation rate of a droplet is not proportional to the area of its free surface, but to the length of its contact line. Finally, the parameter of the developed theoretical model was calculated by curve fitting to decide the initial volume of resin droplets.

Role of gas flow rate during etching of hard-mask layer to extreme ultra-violet resist in dual-frequency capacitively coupled plasmas

  • 권봉수;이정훈;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.132-132
    • /
    • 2010
  • In the nano-scale Si processing, patterning processes based on multilevel resist structures becoming more critical due to continuously decreasing resist thickness and feature size. In particular, highly selective etching of the first dielectric layer with resist patterns are great importance. In this work, process window for the infinitely high etch selectivity of silicon oxynitride (SiON) layers and silicon nitride (Si3N4) with EUV resist was investigated during etching of SiON/EUV resist and Si3N4/EUV resist in a CH2F2/N2/Ar dual-frequency superimposed capacitive coupled plasma (DFS-CCP) by varying the process parameters, such as the CH2F2 and N2 flow ratio and low-frequency source power (PLF). It was found that the CH2F2/N2 flow ratio was found to play a critical role in determining the process window for ultra high etch selectivity, due to the differences in change of the degree of polymerization on SiON, Si3N4, and EUV resist. Control of N2 flow ratio gave the possibility of obtaining the ultra high etch selectivity by keeping the steady-state hydrofluorocarbon layer thickness thin on the SiON and Si3N4 surface due to effective formation of HCN etch by-products and, in turn, in continuous SiON and Si3N4 etching, while the hydrofluorocarbon layer is deposited on the EUV resist surface.

  • PDF

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • 장해규;김대경;채희엽
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

국부적 양극산화 기술 동향 (Technological Trends in a local anodization)

  • 강광모;최수민;나윤채
    • 한국표면공학회지
    • /
    • 제56권2호
    • /
    • pp.115-124
    • /
    • 2023
  • Anodization is an electrochemical process that electrochemically converts a metal surface into an oxide layer, resulting in enhanced corrosion resistance, wear resistance, and improved aesthetic appearance. Local anodization, also known as selective anodization, is a modified process that enables specific regions or patterns on the metal surface to undergo anodization instead of the entire surface. Several methods have been attempted to produce oxide layers via localized anodic oxidation, such as using a mask or pre-patterned substrate. However, these methods are often intricate, time-consuming, and costly. Conversely, the direct writing or patterning approach is a more straightforward and efficient way to fabricate the oxide layers. This review paper intends to enhance our comprehension of local anodization and its potential applications in various fields, including the development of nanotechnologies. The application of anodization is promising in surface engineering, where the anodic oxide layer serves as a protective coating for metals or modifies the surface properties of materials. Furthermore, anodic oxidation can create micro- and nano-scale patterns on metal surfaces. Overall, the development of efficient and cost-effective anodic oxidation methods is essential for the advancement of various industries and technologies.

UV-NIL(Ultraviolet-Nano-Imprinting-Lithography) 방법을 이용한 나노 패터닝기술 (Nano-patterning technology using an UV-NIL method)

  • 심영석;정준호;손현기;신영재;이응숙;최성욱;김재호
    • 한국진공학회지
    • /
    • 제13권1호
    • /
    • pp.39-45
    • /
    • 2004
  • UV-나노임프린팅 (Ultraviolet-Nanoimprinting Lithography:UV-NIL) 공정 기술은 수십 나노에서 수 나노미터 크기의 구조물을 적은 비용으로 대량생산 할 수 있다는 장점을 가지고 있는 기술로 최근 전세계적으로 연구가 활발히 진행되고 있다. 본 연구에서는 반도체 공정 중 마스크 제작 공정을 이용하여 나노패턴을 가진 5${\times}$5${\times}$0.09 인치 크기의 수정스탬프(quartz stamp)를 제작하였고, 임프린팅 (imprinting)시에 레지스트(resist)와 스탬프(stamp) 사이에서 발생하는 점착현상(adhesion)을 방지하고자 그 표면에 Fluoroalkanesilane(FAS) 표면처리를 하였다. 웨이퍼의 평탄도를 개선하고 친수(hydrophilic) 상태의 표면을 만들기 위해 그 표면에 평탄화층을 스핀코팅하였고, 1 nl의 분해능을 가진 디스펜서(dispenser)를 이용하여 레지스트 액적을 도포하였다. 스템프 상의 패턴과 레지스트에 임프린트된 패턴은 SEM, AFM 등을 이용하여 측정하였으며, EVG620-NIL 장비를 이용한 임프린팅 실험에서 370 nm - 1 um 크기의 다양한 패턴을 가진 스탬프의 패턴들이 정확하게 레지스트에 전사됨을 확인하였다.