• Title/Summary/Keyword: Nano-Q+

Search Result 79, Processing Time 0.03 seconds

The Effects of (Ba0.4Ca0.6)SiO3 Nano Spheroidization Glass Additives on the Microstructure and Microwave Dielectric Properties of Ba(Zn1/3Ta2/3)O3 Ceramics

  • Choi, Cheal Soon;Kim, Ki Soo;Rhie, Dong Hee;Yoon, Jung Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1719-1723
    • /
    • 2014
  • In this study, the microwave dielectric properties of nano spheroidization glass powders added $Ba(Zn_{1/3}Ta_{2/3})O_3$ ceramics prepared by solid state reaction have been investigated. Adding $(Ba_{0.4}Ca_{0.6})SiO_3$ nano spheroidization glass powders could effectively promote the densification even in the case of decreasing the sintering temperature. When the glass frit is 0.3 wt% and sintering is carried out at a temperature of $1500^{\circ}C$ for 6 hr, a temperature stable microwave dielectric ceramic could be obtained, which has a dielectric constant (${\varepsilon}_r$) of 30.2, a quality factor ($Q{\times}f_0$) of 124,000 GHz and a temperature coefficient of resonance frequency (${\tau}_f$) of $2ppm/^{\circ}C$.

Wafer-level Vacuum Packaging of a MEMS Resonator using the Three-layer Bonding Technique (3중 접합 공정에 의한 MEMS 공진기의 웨이퍼레벨 진공 패키징)

  • Yang, Chung Mo;Kim, Hee Yeoun;Park, Jong Cheol;Na, Ye Eun;Kim, Tae Hyun;Noh, Kil Son;Sim, Gap Seop;Kim, Ki Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.354-359
    • /
    • 2020
  • The high vacuum hermetic sealing technique ensures excellent performance of MEMS resonators. For the high vacuum hermetic sealing, the customization of anodic bonding equipment was conducted for the glass/Si/glass triple-stack anodic bonding process. Figure 1 presents the schematic of the MEMS resonator with triple-stack high-vacuum anodic bonding. The anodic bonding process for vacuum sealing was performed with the chamber pressure lower than 5 × 10-6 mbar, the piston pressure of 5 kN, and the applied voltage was 1 kV. The process temperature during anodic bonding was 400 ℃. To maintain the vacuum condition of the glass cavity, a getter material, such as a titanium thin film, was deposited. The getter materials was active at the 400 ℃ during the anodic bonding process. To read out the electrical signals from the Si resonator, a vertical feed-through was applied by using through glass via (TGV) which is formed by sandblasting technique of cap glass wafer. The aluminum electrodes was conformally deposited on the via-hole structure of cap glass. The TGV process provides reliable electrical interconnection between Si resonator and aluminum electrodes on the cap glass without leakage or electrical disconnection through the TGV. The fabricated MEMS resonator with proposed vacuum packaging using three-layer anodic bonding process has resonance frequency and quality factor of about 16 kHz and more than 40,000, respectively.

Efficacy of Cr (III) Supplementation on Growth, Carcass Composition, Blood Metabolites, and Endocrine Parameters in Finishing Pigs

  • Wang, M.Q.;He, Y.D.;Lindemann, M.D.;Jiang, Z.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.10
    • /
    • pp.1414-1419
    • /
    • 2009
  • The study was conducted to evaluate the effects of trivalent chromium from different sources on growth, carcass composition, and serum parameters in finishing pigs. Ninety-six crossbred pigs with an initial average body weight of 65.57${\pm}$1.05 kg were blocked by body weight and randomly assigned to four treatments with three replicates. Pigs were offered one of four diets including a control diet or the control diet supplemented with 200 ${\mu}g/kg$ chromium from either chromium chloride ($CrCl_{3}$), chromium picolinate (CrPic) or chromium nanocomposite (CrNano) for 40 days. After completion of the feeding trial, eight pigs from each treatment were selected to collect blood samples, and slaughtered to measure carcass composition. The results showed that supplemental chromium had no significant effect on growth performance, while CrNano increased carcass lean proportion and loin Longissimus muscle area (p<0.05), and decreased carcass fat proportion and 10th rib backfat depth (p<0.05). CrPic supplementation also resulted in lower fat proportion and larger Longissimus muscle area (p<0.05). The addition of Cr from CrNano or CrPic decreased serum glucose (p<0.05) and increased concentrations of total protein and free fat acid in serum (p<0.05). Serum urea nitrogen, triglyceride and cholesterol were decreased (p<0.05), and serum high density lipoprotein and lipase activity were increased (p<0.05) with the supplementation of CrNano. Serum insulin was decreased (p<0.05) by supplemental Cr from CrNano or CrPic, and serum insulin-like growth factor I was increased significantly in the CrNano treated group. These results suggest that chromium nanocomposite has higher efficacy on carcass composition in pigs compared to the traditional chromium sources.

Validation of Stem-loop RT-qPCR Method on the Pharmacokinetic Analysis of siRNA Therapeutics (Stem-loop RT-qPCR 분석법을 이용한 siRNA 치료제의 생체시료 분석법 검증 및 약물 동태학적 분석)

  • Kim, Hye Jeong;Kim, Taek Min;Kim, Hong Joong;Jung, Hun Soon;Lee, Seung Ho
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.653-661
    • /
    • 2019
  • The first small interfering RNA (siRNA) therapeutics have recently been approved by the Food and Drug Administration in the U.S., and the demand for a new RNA therapeutics bioanalysis method-which is essential for pharmacokinetics, including the absorption, distribution, metabolism, and excretion of siRNA therapeutics-is rapidly increasing. The stem-loop real-time qPCR (RT-qPCR) assay is a useful molecular technique for the identification and quantification of small RNA (e.g., micro RNA and siRNA) and can be applied for the bioanalysis of siRNA therapeutics. When the anti-HPV E6/E7 siRNA therapeutic was used in preclinical trials, the established stem-loop RT-qPCR assay was validated. The limit of detection was sensitive up to 10 fM and the lower limit of quantification up to 100 fM. In fact, the reliability of the established test method was further validated in three intra assays. Here, the correlation coefficient of $R^2$>0.99, the slope of -3.10 ~ -3.40, and the recovery rate within ${\pm}20%$ of the siRNA standard curve confirm its excellent robustness. Finally, the circulation profiles of siRNAs were demonstrated in rat serum, and the pharmacokinetic properties of the anti-HPV E6/E7 siRNA therapeutic were characterized using a stem-loop RT-qPCR assay. Therefore, the stemloop RT-qPCR assay enables accurate, precise, and sensitive siRNA duplex quantification and is suitable for the quantification of small RNA therapeutics using small volumes of biological samples.

FEA Simulations and Tests of Rubber Insulator for Truck Suspension

  • Hur, Shin;Woo, Chang Su
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.303-308
    • /
    • 2017
  • In this study, finite element modeling and material property tests are performed for the finite element analysis of rubber isolator parts which support the engine and isolate the vibration. As a result of the P direction analysis of the rubber isolator parts, the static stiffness in the P direction was 44.2 kg/mm, which is well within the error of 5% as compared with the test result of 46.1 kg/mm. The static stiffness of the rubber isolator parts in the Q direction was calculated to be 7.9 kg/mm, which is comparable to the test result of 8.6 kg/mm, with an error of less than 8%. As a result of the analysis on the Z direction, the static stiffness was calculated as 57.7 kg/mm, and the test results were not available. Through this study, it is expected that the time and cost for prototype development can be reduced through nonlinear finite element analysis for rubber isolator parts.

Frequency, bending and buckling loads of nanobeams with different cross sections

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.91-104
    • /
    • 2020
  • The bending, stability (buckling) and vibration response of nano sized beams is presented in this study based on the Eringen's nonlocal elasticity theory in conjunction with the Euler-Bernoulli beam theory. For this purpose, the bending, buckling and vibration problem of Euler-Bernoulli nanobeams are developed and solved on the basis of nonlocal elasticity theory. The effects of various parameters such as nonlocal parameter e0a, length of beam L, mode number n, distributed load q and cross-section on the bending, buckling and vibration behaviors of carbon nanotubes idealized as Euler-Bernoulli nanobeam is investigated. The transverse deflections, maximum transverse deflections, vibrational frequency and buckling load values of carbon nanotubes are given in tables and graphs.

Design and Fabrication of Miniaturized LC Diplexer Embedded into Organic Substrate (적층 유기기판 내에 내장된 소형 LC 다이플렉서의 설계 및 제작)

  • Lee, Hwan-H.;Park, Jae-Y.;Lee, Han-S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.262-263
    • /
    • 2007
  • In this paper, fully embedded and miniaturized diplexer has been designed, fabricated, and characterized for dual-band/mode CDMA handset applications. The size of the embedded diplexer is significantly reduced by embedding high Q circular spiral inductors and high DK MIM capacitors into low cost organic package substrate. The fabricated diplexer has insertion losses and isolations of -0.5 and -23dB at 824-894MHz and -0.7 and -22dB at 1850-1990MHz, respectively. Its size is 3.9mm$\times$3.9mm$\times$ 0.77mm (height). The fabricated diplexer is the smallest one which is fully embedded into low cost organic package substrate.

  • PDF

Light transmission in nanostructures

  • Kim, D. S.;Park, Q-H.;S. H. Han;Ch. Lienau
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.113-115
    • /
    • 2003
  • We investigate transmission of light in nanoscale structures. We present spatial and temporal domain measurements of the dephasing of surface plasmon excitations in metal films with periodic nano-hole arrays. By probing coherent spatial SP propagation lengths of a few f1. $\mu$m and an ultrafast decay of the SP polarization on a 10 fs timescale, we demonstrate that the SP transmission peaks are homogeneously broadened by the SP radiative lifetime. The pronounced wavelength and hole size dependence of the dephasing rate shows that the microscopic origin of the conversion of SP into light is a Rayleigh-like scattering by the periodic hole array. We have experimentally studied the dephasing of surface plasmon excitations in metallic nano-hole arrays. By relating nanoscopic SP propagation, ultrafast light transmission and optical spectra, we demonstrate that the transmission spectra of these plasmonic bandgap structures are homogeneously broadened. The spectral line shape and dephasing time are dominated by Rayleigh scattering of SP into light and can varied over a wide range by controlling the resonance energy and/or hole radius. This opens the way towards designing SP nano-optic devices and spatially and spectrally tailoring light -matter interactions on nanometer length scales.

Percolative Electrical Conductivity of Platy Alumina/Few-layer Graphene Multilayered Composites

  • Choi, Ki-Beom;Kim, Jong-Young;Lee, Sung-Min;Lee, Kyu-Hyoung;Yoon, Dae Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.257-260
    • /
    • 2017
  • In this work, we present a facile one-pot synthesis of a multilayer-structured platy alumina/few-layer graphene nanocomposite by planetary milling and hot pressing. The sintered composites have electrical conductivity exhibiting percolation behavior (threshold ~ 0.75 vol.%), which is much lower than graphene oxide/ceramic composites (> 3.0 vol.%). The conductivity data are well-described by the percolation theory, and the fitted exponent values are estimated to be 1.65 and 0.93 for t and q, respectively. The t and q values show conduction mechanisms intermediate between 2D- and 3D, which originates from quantum tunneling between nearest neighbored graphenes.

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.