Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.3.09

Percolative Electrical Conductivity of Platy Alumina/Few-layer Graphene Multilayered Composites  

Choi, Ki-Beom (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
Kim, Jong-Young (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
Lee, Sung-Min (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
Lee, Kyu-Hyoung (Department of Nano Applied Engineering, Kangwon National University)
Yoon, Dae Ho (Department of Materials Science and Engineering, Sungkyunkwan University)
Publication Information
Abstract
In this work, we present a facile one-pot synthesis of a multilayer-structured platy alumina/few-layer graphene nanocomposite by planetary milling and hot pressing. The sintered composites have electrical conductivity exhibiting percolation behavior (threshold ~ 0.75 vol.%), which is much lower than graphene oxide/ceramic composites (> 3.0 vol.%). The conductivity data are well-described by the percolation theory, and the fitted exponent values are estimated to be 1.65 and 0.93 for t and q, respectively. The t and q values show conduction mechanisms intermediate between 2D- and 3D, which originates from quantum tunneling between nearest neighbored graphenes.
Keywords
Ceramic; Graphene; Percolation; Electrical conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Pecharroman and J. S. Moya, "Experimental Evidence of a Giant Capacitance in Insulator-Conductor Composites at the Percolation Threshold," Adv. Mater., 12 [4] 294-97 (2000).   DOI
2 C. Ramirez, F. M. Figueiredo, P. Miranzo, P. Poza, and M. I. Osendi, "Graphene Nanoplatelet/Silicon Nitride Composites with High Electrical Conductivity," Carbon, 50 [10] 3607-15 (2012).   DOI
3 Y. Lv, L. Yu, C. Jiang, S. Chen, and Z. Nie, "Synthesis of Graphene Nanosheet Powder with Layer Number Control via a Soluble Salt-Assisted Route," RSC Adv., 4 [26] 13350-54 (2014).   DOI
4 C. Damm, T. J. Nacken, and W. Peukert, "Quantitative Evaluation of Delamination of Graphite by Wet Media Milling," Carbon, 81 284-94 (2015).   DOI
5 Y. Fan, L. Wang, J. Li, J. Li, S. Sun, F. Chen, L. Chen, and W. Jiang, "Preparation and Electrical Properties of Graphene Nanosheet/$Al_2O_3$ Composites," Carbon, 48 [6] 1743-49 (2010).   DOI
6 C. Ramirez, L. Garzon, P. Miranzo, M. I. Osendi, and C. Ocal, "Electrical Conductivity Maps in Graphene Nanoplatelet/Silicon Nitride Composites Using Conducting Scanning Force Microscopy," Carbon, 49 [12] 3873-80 (2011).   DOI
7 E. Lee, K. B. Choi, S. M. Lee, J. Y. Kim, J. Y. Jung, S. W. Baik, Y. S. Lim, S. J. Kim, and W. Shim, "A Scalable and Facile Synthesis of Alumina/Exfoliated Graphite Composites by Attrition Milling," RSC Adv., 5 [113] 93267-73 (2015).   DOI
8 H. J. Kim, S. M. Lee, Y. S. Oh, Y. H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J. Y. Kim, and R. S. Ruoff, "Unoxidized Graphene/Alumina Nanocomposite: Fracture- and Wear-Resistance Effects of Graphene on Alumina Matrix," Sci. Rep., 4 5176 (2014).
9 K. Ahmad, W. Pan, and S. L. Shi, "Electrical Conductivity and Dielectric Properties of Multiwalled Carbon Nanotube and Alumina Composites," Appl. Phys. Lett., 89 [13] 133122 (2006).   DOI
10 C. Knieke, A. Berger, M. Voigt, R. N. K. Taylor, J. Rohrl, and W. Peukert, "Scalable Production of Graphene Sheets by Mechanical Delamination," Carbon, 48 [11] 3196-204 (2010).   DOI
11 S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S.-E. Wu, S.-F. Chen, C. Liu, S. T. Nguyen, and R. S. Ruoff, "Graphene-Silica Composite Thin Films as Transparent Conductors," Nano Lett., 7 [7] 1888-92 (2007).   DOI
12 E. J. Garboczi, K. A. Snyder, J. F. Douglas, and M. F. Thorpe, "Geometrical Percolation Threshold of Overlapping Ellipsoids," Phys. Rev. E, 52 [1] 819-28 (1995).   DOI
13 A. L. Efros and B. I. Shklovskii, "Critical Behaviour of Conductivity and Dielectric Constant near the Metal-Non-Metal Transition Threshold," Phys. Status Solidi B, 76 [2] 475-85 (1976).   DOI
14 D. Stauffer and A. Aharony, Introduction to Percolation Theory; pp. 93-121, Tayler and Francis, London, 1994.
15 Z. Rubin, S. A. Sunshine, M. B. Heaney, I. Bloom, and I. Balberg, "Critical Behavior of the Electrical Transport Properties in a Tunneling-Percolation System," Phys. Rev. B, 59 [19] 12196-99 (1999).   DOI
16 P. Sheng, E. K. Sichel, and J. I. Gittleman, "Fluctuation-Induced Tunneling Conduction in Carbonpolyvinylchloride Composites," Phys. Rev. Lett., 40 [18] 1197-200 (1978).   DOI
17 V. Leon, A. M. Rodriguez, P. Prieto, M. Prato, and E. Vazquez, "Exfoliation of Graphite with Triazine Derivatives under Ball-Milling Conditions: Preparation of Few-Layer Graphene via Selective Noncovalent Interactions," ACS Nano, 8 [1] 563-71 (2014).   DOI
18 Y. Fan, W. Jiang, and A. Kawasaki, "Highly Conductive Few-Layer Graphene/$Al_2O_3$ Nanocomposites with Tunable Charge Carrier Type," Adv. Funct. Mater., 22 [18] 3882-89 (2012).   DOI
19 W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, "Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling," J. Mater. Chem., 20 [28] 5817-19 (2010).   DOI
20 I. Y. Jeon, Y. R. Shin, G. J. Sohn, H. J. Choi, S. Y. Bae, J. Mahmood, S. M. Jung, J. M. Seo, M. J. Kim, D. W. Chang, L. Dai, and J. B. Baek, "Edge-Carboxylated Graphene Nanosheets via Ball Milling," Proc. Natl. Acad. Sci. U. S. A., 109 [15] 5588-93 (2012).   DOI
21 S. Kirkpatrick, "Percolation and Conduction," Rev. Mod. Phys., 45 [4] 574-88 (1973).   DOI
22 G. Cunningham, M. Lotya, N. McEvoy, G. S. Duesberg, P. van der Schoot, and J. N. Coleman, "Percolation Scaling in Composites of Exfoliated $MoS_2$ Filled with Nanotubes and Graphene," Nanoscale, 4 [20] 6260-64 (2012).   DOI
23 J.-Y. Kim, W. H. Lee, J. W. Suk, J. R. Potts, H. Chou, I. N. Kholmanov, R. D. Piner, J. Lee, D. Akinwande, and R. S. Ruoff, "Chlorination of Reduced Graphene Oxide Enhances the Dielectric Constant of Reduced Graphene Oxide/Polymer Composites," Adv. Mater., 25 [16] 2308-13 (2013).   DOI
24 I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, "Current Saturation in Zero-Bandgap, Top-Gated Graphene Field-Effect Transistors," Nat. Nanotechnol., 3 [11] 654-59 (2008).   DOI
25 C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, "Graphene-Based Supercapacitor with an Ultrahigh Energy Density," Nano Lett., 10 [12] 4863-68 (2010).   DOI
26 H. Chang, Z. Sun, K. Y. F. Ho, X. Tao, F. Yan, W. M. Kwok, and Z. Zheng, "A Highly Sensitive Ultraviolet Sensor Based on a Facile in situ Solution-Grown ZnO Nanorod/Graphene Heterostructure," Nanoscale, 3 [1] 258-64 (2011).   DOI
27 B. I. Halperin, S. Feng, and P. N. Sen, "Differences between Lattice and Continuum Percolation Transport Exponents," Phys. Rev. Lett., 54 [22] 2391-94 (1985).   DOI