• Title/Summary/Keyword: Nano-Fabrication

Search Result 1,156, Processing Time 0.046 seconds

Silicon Nano Patterning Using Focused ion Beam: Simulation and Fabrication (집속이온빔을 이용한 실리콘 나노 패터닝: 시뮬레이션과 가공)

  • Han J.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.489-490
    • /
    • 2006
  • To establish fabrication techniques for nano structure understanding of focused ion beam (FIB) milling process is required. In this study the mathematical model containing the factors related to FIB milling is developed to acquire the optimal fabrication condition. Then, the model is verified by comparison with various nano pattern fabricated in actual FIB system. Consequently, it is demonstrated that the nano patterns with the smallest pitch can be fabricated using developed FIB milling model.

  • PDF

Fabrication of a 17inch Area Size Nano-Wire Grid using Roll-to-Roll UV Nano-Imprinting Lithography (Roll-to-Roll UV 나노 임프린팅 리소그래피에 의한 대면적 17인치의 나노 와이어 그리드의 제작)

  • Huh, Jong-Wook;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.3
    • /
    • pp.17-30
    • /
    • 2011
  • The polarizer is an important optical element used in a variety of applications. Nano-wire grid polarizers in the form of sub-wavelength metallic gratings are an attractive alternative to conventional polarizers, because they provide high extinction ratio. This study has been carried out to fabrication of the 17inch area size nano-wire grid polarizer(NWGP) The master for NWGPs with a pitch of 200nm and the area size $730mm{\times}450mm$ were fabricated using laser interference lithography and aluminum sputtering and wet etching. And The NWGP fabrication process was using by the Roll to-Roll UV imprinting and was applied to flexible PET film. The results were a transmission of light (Tp) 46.7%, reflectance (Rs) 40.1% and Extinction ratio of above 16 for the visible light range.

Fabrication of silicon nano-ribbon and nano-FETs by using AFM anodic oxidation

  • Hwang, Min-Yeong;Choe, Chang-Yong;Jeong, Ji-Cheol;An, Jeong-Jun;Gu, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.54-54
    • /
    • 2009
  • AFM anodic oxidation has the capability of patterning complex nano-patterns under relatively high speeds and low voltage. We report the fabrication using a atomic force microscopy (AFM) of silicon nano-ribbon and nano-field effect transistors (FETs). The fabricated nano-patterns have great potential characteristics in various fields due to their interesting electronic, optical and other profiles. The results shows that oxide width and the separation between the oxide patterns can be optimally controlled. The subsequently fabricated silicon nano-ribbon and nano-FET working devices were controled by various tip-sample bias-voltages and scan speed of AFM anodic oxidation. The results may be applied for highly integration circuits and sensitive optical sensor applications.

  • PDF

A Study on the Fabrication of Nano-Pattern Mold Using Anodic Aluminum Oxide Membrane (양극산화 알루미늄막을 이용한 나노패턴 성형용 금형제작에 대한 연구)

  • Oh, J.G.;Kim, J.S.;Kang, J.J.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.73-78
    • /
    • 2010
  • Recently, many researches on the development of super-hydrophobic surface have been concentrated on the fabrication of nano-patterned products. Nano-patterned mold is a key to replicate nano-patterned products by mass production process such as injection molding and UV molding. The present paper proposes the new fabricating method of nano-patterned mold at low cost. The nano-patterned mold was fabricated by electroforming the anodic aluminum oxide membrane filled with UV curable resin in nano-hole by capillary phenomenon. As a result, the final mold with nano-patterns which have the holes with the diameter of 100~200 nm was fabricated. Furthermore, the UV-molded products with clear nano- patterns which have the pillars with the diameter of 100~200nm were achieved.

New Fabrication method of Planar Micro Gas Sesnor Array (집적도를 높인 평면형 가스감지소자 어레이 제작기술)

  • 정완영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.727-730
    • /
    • 2003
  • Thin tin oxide film with nano-size particle was prepared on silicon substrate by hydrothermal synthetic method and successive sol-gel spin coating method. The fabrication method of tin oxide film with ultrafine nano-size crystalline structure was tried to be applied to fabrication of micro gas sensor array on silicon substrate. The tin oxide film on silicon substrate was well patterned by chemical etching upto 5${\mu}{\textrm}{m}$width and showed very uniform flatness. The tin oxide film preparation method and patterning method were successfully applied to newly proposed 2-dimensional micro sensor fabrication.

  • PDF

Study on Fabrication of Highly Ordered Nano Patterned Master by Using Anodic Aluminum Oxidation (AAO를 이용한 나노 패턴 마스터 제작에 관한 연구)

  • Shin, H.G.;Kwon, J.T.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.368-370
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. The resulting good filled uniform nano molded structure through hot embossing molding process shows the validity of the fabricated nano pattern masters.

  • PDF