• Title/Summary/Keyword: Nano-Coating

Search Result 765, Processing Time 0.027 seconds

Mechanical Property Evaluation of Dielectric Thin Films for Flexible Displays using Organic Nano-Support-Layer (유기 나노 보강층을 활용한 유연 디스플레이용 절연막의 기계적 물성 평가)

  • Oh, Seung Jin;Ma, Boo Soo;Yang, Chanhee;Song, Myoung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.33-38
    • /
    • 2021
  • Recently, rollable and foldable displays are attracting great attention in the flexible display market due to their excellent form factor. To predict and prevent the mechanical failure of the display panels, it is essential to accurately understand the mechanical properties of brittle SiNx thin films, which have been used as an insulating film in flexible displays. In this study, tensile properties of the ~130 nm- and ~320 nm-thick SiNx thin films were successfully measured by coating a ~190 nm-thick organic nano-support-layer (PMMA, PS, P3HT) on the fragile SiNx thin films and stretching the films as a bilayer state. Young's modulus values of the ~130 nm and ~320 nm SiNx thin films fabricated through the controlled chamber pressure and deposition power (A: 1250 mTorr, 450 W/B: 1000 mTorr, 600 W/C: 750 mTorr, 700 W) were calculated as A: 76.6±3.5, B: 85.8±4.6, C: 117.4±6.5 GPa and A: 100.1±12.9, B: 117.9±9.7, C: 159.6 GPa, respectively. As a result, Young's modulus of ~320 nm SiNx thin films fabricated through the same deposition condition increased compared to the ~130 nm SiNx thin films. The tensile testing method using the organic nano-support-layer was effective in the precise measurement of the mechanical properties of the brittle thin films. The method developed in this study can contribute to the robust design of the rollable and foldable displays by enabling quantitative measurement of mechanical properties of fragile thin films for flexible displays.

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

Characterization of Behavior of Colloidal Zero-Valent Iron and Magnetite in Aqueous Environment (나노크기의 교질상 영가철 및 자철석에 대한 수용상의 거동특성)

  • Lee, Woo Chun;Kim, Soon-Oh;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.95-108
    • /
    • 2015
  • Nano-sized iron colloids are formed as acid mine drainage is exposed to surface environments and is introduced into surrounding water bodies. These iron nanomaterials invoke aesthetic contamination as well as adverse effects on aqueous ecosystems. In order to control them, the characteristics of their behaviour should be understood first, but the cumulative research outputs up to now are much less than the expected. Using zero-valent iron (ZVI) and magnetite, this study aims to investigate the behaviour of iron nanomaterials according to the change in the composition and pH of background electrolyte and the concentration of natural organic matter (NOM). The size and surface zeta potential of iron nanomaterials were measured using dynamic light scattering. Characteristic behaviour, such as aggregation and dispersion was compared each other based on the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory. Whereas iron nanomaterials showed a strong tendency of aggregation at the pH near point of zero charge (PZC) due to electrostatic attraction between particles, their dispersions became dominant at the pH which was higher or lower than PZC. In addition, the behaviour of iron nanomaterials was likely to be more significantly influenced by cations than anions in the electrolyte solutions. Particularly, it was observed that divalent cation influenced more effectively than monovalent cation in electrostatic attraction and repulsion between particles. It was also confirmed that the NOM enhanced the dispersion nanomaterials with increasing the negative charge of nanomaterials by coating on their surface. Under identical conditions, ZVI aggregated more easily than magnetite, and which would be attributed to the lower stability and larger reactivity of ZVI.

Effect of MeOH/IPA Ratio on Coating and Fluxing of Organic Solderability Preservatives (유기 솔더 보존제의 코팅 및 플럭싱에 대한 메탄올/이소프로필알콜 비율의 영향)

  • Lee, Jae-Won;Kim, Chang Hyeon;Lee, Hyo Soo;Huh, Kang Moo;Lee, Chang Soo;Choi, Ho Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.402-407
    • /
    • 2008
  • Recent popularity in mobile electronics requires higher standard on the mechanical strength of electronic packaging. Thus, the method of soldering between chip and substrate in electronic packaging process is changing from conventional method using intermetallic compound to a new method using organic solderability preservative (OSP) in order to improve the stability and the reliability of final product. Since current organic solder preservatives have several serious problems like thermo-stability during packaging process, however, it is necessary to develop new OSPs having thermo-stability. The main purpose of this study is to investigate the effect of MeOH/IPA (Isopropyl alcohol) ratio on the fluxing of a new OSP, developed in previous research, andto find out an optimum formulation of flux components for the application of the OSP in current packaging process. As a result of this study, it was revealed that higher MeOH/IPA ratio in flux showed better performance of fluxing a new OSP.

Damage Prevention Effect of Green Tea Seed Oil on Colored and Decolored Hair (녹차씨 오일이 염색 및 탈색된 모발의 재손상 및 탈색 방지에 미치는 영향)

  • Min, Myung-Ja;Choi, Moon-Hee;Kim, Gwui Cheol;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.287-294
    • /
    • 2013
  • Stained and discolored hair will be damaged by the shampooing, daily UV disposal, and the use of hair dryer. Thus many studies about the effect of various natural substances on the re-secure the skin and scalp are recently reported. This study was carried out to investigate the effect of green tea (Camelloia sinensis) seed oil on colored (dyed) and decolored (bleached) hair. The beneficial effects of green tea seed oil are already well known, but little research has been done about the hair treatment and fade-resistant effect. Dyed and bleached hair was pretreated with green tea seed oil to determine the tensile strength and elongation of the hair, to analyze the hair surface using SEM, and to compare the color fade using spectrocolormeter. The results showed that the tensile strength increased with green tea seed oil pretreatment samples for virgin, dyed, and bleached hairs. Elongation showed the reverse results showing the presence of hair treatment effect. The results of the surface pre-treatment in all groups analyzed by SEM, the hair cuticle became sharper, so coating effect were identified with all samples. The value of the $L^*$, $a^*$, $b^*$ decreased with washed hairs damaged by UV irradiation and the values were decreased also in dyed and bleached hair. In summary, green tea seed oil prevent reinjury to the heat and UV rays for colored and decolored hairs. Cosmetic practice effects of the oil were identified in the field to be appropriate to the customer's skin and scalp that natural cosmetic oils would like to offer.

Blood Protein Adsorption and Platelet Activation on an Ultra-hydrophilic Substrate (초친수성 표면에서 혈장 단백의 흡착 및 혈소판의 변화에 관한 연구)

  • Park, Nam-Hee;Chun, Bae-Hyeock;Je, Hyung-Gon;Lee, Jun-Wan;Lee, Jae-Won
    • Journal of Chest Surgery
    • /
    • v.40 no.4 s.273
    • /
    • pp.273-279
    • /
    • 2007
  • Background: We evaluate the efficacy of ultra-hydrophilic coated bypass circuits in comparison with uncoated bypass circuits in a porcine cardiopulmonary bypass model. Material and Method: Normothermic cardiopulmonary bypass was peformed in 10 anesthetized pigs via the left atrium and ascending aorta with a centrifugal biopump. Ultra-hydrophilic coated bypass circuits wore used in 5 pigs (the study group) and uncoated bypass circuits were used for the control group. Platelet counts and platelet aggregation tests were peformed. The thrombin-antithrombin(TAT) complex level and total protein level were evaluated. Result: There were no significant changes En the platelet counts and aggregation ability of both groups. The TAT complex levels were not different between the two groups. The total protein level was significantly lower in the control group after cessation of cardiopulmonary bypass. Conclusion: The clinical effects of ultra-hydrophilic coating circuits were not remarkable, in terms of reducing inflammatory reaction and protection of platelet function. However, the effect of protection for blood protein adsorption might be acceptable.

Preparation of Transparent Film by Coating of Acrylate Copolymer as MMA-co-GMA-co-AA ((MMA-co-GMA-co-AA)형 아크릴레이트 공중합체를 도포한 투명필름의 제조)

  • Kim, Ji-Hye;Kim, Moon-Sun;Hong, Sung-Chul;Kim, Byung-Woo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • In the study, acrylate copolymer as MMA-co-GMA-co-AA with a high hardness and flexibility was synthesized for applying to the clear protection film, where GMA was used as a mediator to enhance polymerization-efficiency between MMA and AA. With an increase of GMA content, molecular weight and hardness of acrylate copolymer increased, however, flexibility decreased. With an increase of AA content, its molecular weight and hardness decreased, however, flexibility increased. Molar ratio of GMA/MMA and AA/GMA were optimized as 1.6 and 1.8, respectively, at 30 g of MMA to enhance hardness and flexibility of acrylate copolymer film. Molecular weight and Tg of the acrylate copoylmer were 13,300 g/mol and 136.5 $^{\circ}C$, respectively. Hardness of the coated film at 1.4 g/$m^2$ of spread was 1 H and no crack was observed at expansion ratio of 5% and 15%, respectively. Hardness of film was improved to 3 H by increasing spread of 4.1-4.6 g/$m^2$.

Preparation and Evaluation of Poly(vinyl pyridine) Copolymers for Organic Solderability Preservatives (유기솔더 보존제용 폴리(비닐 피리딘) 공중합체의 합성 및 특성평가)

  • Im, Jeong-Hyuk;Lee, Hyun-Jun;Huh, Kang-Moo;Kim, Chang-Hyeon;Lee, Hyo-Soo;Lee, Chang-Soo;Choi, Ho-Suk
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.519-524
    • /
    • 2006
  • Poly(4-vinyl pyridine) (PVP) and its copolymers, poly(4-vinyl pvridine- co-acrylamide) and poly(4-vinyl pyridine-co-allylamine), were synthesized and evaluated for application to organic solder-ability preservatives (OSP). The copolymers were synthesized by radical polymerization of vinyl pyridine in the presence of acrylamide or allylamine as a comonomer. Various kinds of polymers with different chemical composition were synthesized by varying the feed ratio of monomers and their low $M_w$ polymers can be obtained by adding 2-mercaptoethanol as a chain transfer agent during poly-merization. All the polymers showed good adhesion properties on Cu pad when they were spin-coated. Especially, allylamine -containing copolymers showed both good adhesion and solubility properties. Also, they exhibited better thermal stability than PVP homopolymer and such thermal properties were changed depending on the chemical composition and their $M_w$, which were evidenced by the measurement of oxygen induced temperature (OIT). From the OIT measurement, poly(4-vinyl pyridine- co-allylamine) was thermally stable up to $230^{\circ}C$ for 70 min in the 100% oxygen environment. As a result, allylamine-containing copolymers can be considered as a promising OSP coating material that has excellent thermal and adhesive properties applicable to the present microelectronic package processes.

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.

Kinetics of Photocatalytic Reactions with Porous Carriers Coated with Nano-$TiO_2$ Particles (나노-$TiO_2$ 입자로 코팅된 다공성 담체의 광촉매 반응에 관한 동력학)

  • Park, Seong-Jun;Rittmann, Bruce E.;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.927-932
    • /
    • 2009
  • Toxic and recalcitrant organic pollutants in wastewaters can be effectively treated when advanced oxidation and biodegradation are combined, ideally with intimate coupling, in which both processes occur simultaneously in the same system. One means to achieve intimate coupling is to coat nanoscale $TiO_2$ on the outside of macroporous biofilm carriers. This study investigated the kinetics of photocatalysis with $TiO_2$-coated porous carriers. The carriers were made of polyvinyl alcohol (PVA) and coated with $TiO_2$ using a low-temperature sol-gel process. The $TiO_2$-coated carriers catalyzed the oxidation of methylene blue (MB) effectively under irradiation of UV light. The overall reaction rate with adsorption and photolysis saturated at high MB concentration, and approached the adsorption rate, which was first order for all MB concent rations. This result indicates that adsorbed MB may have slowed photocatalysis by blocking active sites for photocatalysis. The overall kinetics could be described by a quasi-Langmuir model. The estimated maximum specific (per unit mass of $TiO_2$) transformation rate of MB by the $TiO_2$-coated carriers was four times larger than that obtained from slurry-$TiO_2$ reactors. This observation demonstrated that the $TiO_2$ present as a coating on the carriers maintained high efficiency for transforming recalcitrant organic matter via photocatalysis. These findings serve as a foundation for advancement of an intimate coupling of photocatalysis to biodegradation.