DOI QR코드

DOI QR Code

Mechanical Property Evaluation of Dielectric Thin Films for Flexible Displays using Organic Nano-Support-Layer

유기 나노 보강층을 활용한 유연 디스플레이용 절연막의 기계적 물성 평가

  • Oh, Seung Jin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ma, Boo Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Yang, Chanhee (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Song, Myoung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Taek-Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2021.09.13
  • Accepted : 2021.09.30
  • Published : 2021.09.30

Abstract

Recently, rollable and foldable displays are attracting great attention in the flexible display market due to their excellent form factor. To predict and prevent the mechanical failure of the display panels, it is essential to accurately understand the mechanical properties of brittle SiNx thin films, which have been used as an insulating film in flexible displays. In this study, tensile properties of the ~130 nm- and ~320 nm-thick SiNx thin films were successfully measured by coating a ~190 nm-thick organic nano-support-layer (PMMA, PS, P3HT) on the fragile SiNx thin films and stretching the films as a bilayer state. Young's modulus values of the ~130 nm and ~320 nm SiNx thin films fabricated through the controlled chamber pressure and deposition power (A: 1250 mTorr, 450 W/B: 1000 mTorr, 600 W/C: 750 mTorr, 700 W) were calculated as A: 76.6±3.5, B: 85.8±4.6, C: 117.4±6.5 GPa and A: 100.1±12.9, B: 117.9±9.7, C: 159.6 GPa, respectively. As a result, Young's modulus of ~320 nm SiNx thin films fabricated through the same deposition condition increased compared to the ~130 nm SiNx thin films. The tensile testing method using the organic nano-support-layer was effective in the precise measurement of the mechanical properties of the brittle thin films. The method developed in this study can contribute to the robust design of the rollable and foldable displays by enabling quantitative measurement of mechanical properties of fragile thin films for flexible displays.

최근 유연 디스플레이에 관한 대중의 관심이 증대됨에 따라 롤러블(rollable), 폴더블(foldable) 디스플레이와 같은 우수한 폼 팩터(form factor)를 지닌 차세대 유연(flexible) 디스플레이가 주목받고 있다. 유연 디스플레이의 기계적 신뢰성 확보 측면에서, 내부 절연막으로 활용되는 실리콘 질화물(SiNx) 박막은 구동 중 발생하는 응력에 매우 취약하므로 기계적 물성을 정확히 파악하여 파손을 예측하고 패널의 전기적 단락을 방지하는 것이 중요하다. 본 논문에서는, ~130 nm, ~320 nm 두께의 SiNx 박막 박막 상부에 ~190 nm 두께의 유기 나노 보강층(PMMA, PS, P3HT)을 코팅하여 이중층 구조로 인장함으로써 매우 취성한 SiNx 박막의 탄성 계수와 인장 강도 및 연신율을 측정하는 데 성공하였다. 챔버 압력 및 증착 파워를 조절한 공정 조건(A: 1250 mTorr, 450 W/B: 1000 mTorr, 600 W/C: 750 mTorr, 700 W)을 통해 제작된 ~130 nm SiNx 의 탄성계수는 A: 76.6±3.5, B: 85.8±4.6, C: 117.4±6.5 GPa로, ~320 nm SiNx는 A: 100.1±12.9, B: 117.9±9.7, C: 159.6 GPa로 측정되었다. 결과적으로, 동일 공정 조건 하에서 SiNx 박막의 두께가 증가할수록 탄성 계수가 증가하는 경향을 확인하였으며, 유기 나노 보강층을 활용한 인장 시험법은 파손되기 쉬운 취성 박막의 기계적 물성을 높은 정밀도로 측정하는 데 효과적이었다. 본 연구에서 개발된 방법은, 취약한 디스플레이용 박막의 정량적인 기계적 물성 파악을 가능케하여 강건한 롤러블, 폴더블 디스플레이의 설계에 이바지할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 (주)LG Display의 LGD-KAIST Incubation Program의 지원을 받아 수행된 연구결과입니다(C2020004052).

References

  1. E. G. Jeong, J. H. Kwon, K. S. Kang, S. Y. Jeong, and K. C. Choi. "A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs", Journal of Information Display 21(1), 19 (2020). https://doi.org/10.1080/15980316.2019.1688694
  2. M. -K. Lee, I. -W. Suh, H. -S. Jung, J. -H. Lee, and S. -H. Choa. "Warpage of Flexible OLED under High Temperature Reliability Test", J. Microelectron. Packag. Soc. 23(1) 17 (2016). https://doi.org/10.6117/KMEPS.2016.23.1.017
  3. B. S. Ma, W. Jo, W. Kim, and T. -S. Kim. "Mechanical Modeling of Rollable OLED Display Apparatus Considering Spring Component", J. Microelectron. Packag. Soc. 27(2) 19 (2020). https://doi.org/10.6117/KMEPS.2020.27.2.019
  4. K. Kim, H. Luo, T. Zhu, O. N. Pierron, and S. Graham. "Influence of Polymer Substrate Damage on the Time Dependent Cracking of SiNx Barrier Films", Scientific Reports 8, 4560 (2018). https://doi.org/10.1038/s41598-018-22105-2
  5. E. K. Park, S. Kim, J. Heo, and H. J. Kim. "Electrical evaluation of crack generation in SiNx and SiOxNy thin-film encapsulation layers for OLED displays", Applied Surface Science 370(1), 126 (2016). https://doi.org/10.1016/j.apsusc.2016.02.142
  6. H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone. "Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films", Materials Science and Engineering A 435-436, 453 (2006). https://doi.org/10.1016/j.msea.2006.07.015
  7. S. J. Oh, B. S. Ma, H. J. Kim, C. Yang, T. -S. Kim. "Measurement of Mechanical Properties of Thin Film Materials for Flexible Displays", J. Microelectron. Packag. Soc. 27(3), 77 (2020). https://doi.org/10.6117/KMEPS.2020.27.3.077
  8. J. -H. Kim, A. Nizami, Y. Hwangbo, B. Jang, H. Lee, Woo, C. S. Hyun, and T. -S. Kim. "Tensile testing of ultra-thin films on water surface", Nature Communications 4(1), 1 (2013).
  9. T. C. Chu, W. F. Ranson, M. A. Sutton and W. H. Peters. "Applications of Digital-Image-Correlation Techniques to Experimental Mechanics", Experimental Mechanics 25(3) 232 (1985). https://doi.org/10.1007/BF02325092
  10. O. Awartani, B. I. Lemanski, H. W. Ro, L. J. Richter, D. M. DeLongchamp, and B. T. O'Connor. "Correlating Stiffness, Ductility, and Morphology of Polymer:Fullerene Films for Solar Cell Applications", Advanced Energy Materials 3(3) 399 (2013). https://doi.org/10.1002/aenm.201200595
  11. X. Chen, B. L. Kirsch, R. Senter, S. H. Tolbert, and V. Gupta. "Tensile testing of thin films supported on compliant substrates", Mechanics of Materials 41(7), 839 (2009). https://doi.org/10.1016/j.mechmat.2009.02.003
  12. J. Chang, K. B. Toga, J. D. Paulsen, B. Menon, and T. P. Russell. "Thickness Dependence of the Young's Modulus of Polymer Thin Films", Macromolecules 51(17), 6764 (2018). https://doi.org/10.1021/acs.macromol.8b00602
  13. Z. Gan, C. Wang, and Z. Chen. "Material Structure and Mechanical Properties of Silicon Nitride and Silicon Oxynitride Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition", Surfaces 1, 59(72) (2018). https://doi.org/10.3390/surfaces1010006
  14. T. Y. Tsui, A. J. McKerrow, and J. J. Vlassak. "Constraint Effects on Thin Film Channel Cracking Behavior", Journal of Materials Research 20(9), 2266 (2005). https://doi.org/10.1557/jmr.2005.0317