• Title/Summary/Keyword: Nano sensor

Search Result 524, Processing Time 0.028 seconds

Magnetic Bio-Sensor Using Planar Hall Effect (평면홀 효과를 이용한 자기 바이오센서)

  • Oh, Sun-Jong;Hung, Tran Quang;Kumar., S. Ananda;Kim, Cheol-Gi;Kim, Dong-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.5
    • /
    • pp.421-426
    • /
    • 2008
  • The magnetic bio-sensor used the PHR (planar hall resistance) effect generated by the free layer in spin-valve giant magnetoresistance structure of Ta/NiFe/CoFe/Cu/NiFe/IrMn/Ta. The PHR element with micrometer size was fabricated through the photolithograph and dry etching process. The PHR signal with magnetic field was measured under the conditions of with and without single magnetic bead. A single magnetic bead of diameter $2.8\;{\mu}m$ was successfully detected using the PHR sensor. Therefore, the high resolution PHR sensor can be applied to bio-sensor application utilizing the output voltage variation of the PHR signals in the presence and absence of a single magnetic bead.

Modeling and HSPICE analysis of the CMOS image sensor pixel with the complementary signal path (상보형 신호경로 방식의 CMOS 이미지센서 픽셀 모델링 및 HSPICE 해석)

  • Kim, Jin-Su;Jung, Jin-Woo;Kang, Myung-Hun;Noh, Ho-Sub;Kim, Jong-Min;Lee, Jae-Woon;Song, Han-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.41-52
    • /
    • 2008
  • In this paper, a circuit analysis of the complementary CMOS active pixel and readout circuit is carried out. Complementary pixel structure which is different from conventional 3TR APS structure is consist of photo diode, reset PMOS, several NMOSs and PMOSs sets for complementary signals. Photo diode is modelled with Medici device program. HSPICE was used to analyze the variation of the signal feature depending on light intensity using $0.5{\mu}M$ standard CMOS process. Simulation results show that the output signal range is from 0.8 V to 4.5 V. This signal range increased 135 % output dynamic range compared to conventional 3TR pixel in the condition of 5 V power supply.

Comparison of Nano-particle Emission Characteristics in CI Engine with Various Biodiesel Blending Rates by using PPS System (PPS시스템 이용 바이오디젤 혼합율에 따른 극미세입자 배출특성 비교)

  • Kwon, J.W.;Kim, M.S.;Chung, M.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.134-139
    • /
    • 2012
  • The main purpose of this study is to analyze and compare the nano-particle emission characteristics by 3-different biodiesel blending rates in a CI engine. Nano-particle number density emitted from various operating conditions of compression ignition engine can be investigated by using the PPS (Pegasor Particle Sensor) system. Namely, some particle charged through the corona discharge in real-time can be measured by PPS system. Under the steady state operation of the 2.0L CRDi diesel engine with different operating condition and biodiesel blending rates, the nano-particle number density was analyzed at the downstream position of DOC system. As this research result, more engine load speed and higher the concentration of biodiesel blending rate showed that the nano-particle number density decreases. Also we found that DOC system for clean diesel engine is effectively useful instrument to reduce diesel particulate matter as resource of nano-particle generation.

Optical Characteristics of Plasmonic Nano-structure Using Polystyrene Nano-beads (폴리스티렌 나노 비드를 이용한 플라즈모닉 나노 구조체의 광학 특성)

  • Kim, Doo Gun;Jung, Byung Gue;Kim, Hong-Seung;Kim, Tae-Ryong;Kim, Seon-Hoon;Ki, Hyun-Chul;Kim, Tae-Un;Shin, Jae Cheol;Choi, Young-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.244-248
    • /
    • 2015
  • We proposed and demonstrated the double layered metallic nano-hole structure using polystyrene beads process to enhance the sensitivity of surface plasmon resonance (SPR). The double layered SPR structures are calculated using the finite-difference time-domain (FDTD) method for the width, thickness, and period of the metallic nano-hole structures. The thickness of the metal film and the metallic nano-hole is 30 and 20 nm in the 214 nm wide nano-hole size, respectively. The double layered SPR structures are fabricated with monolayer polystyrene beads of 420 nm wide. The sensitivities of the conventional SPR sensor and the double layered SPR sensor are obtained to 42.2 and 52.1 degree/RIU, respectively.

Real-time Measurement of Precision Displacement using Fiber Optic EFPI Sensor (광섬유 EFPI 센서를 이용한 실시간 고정밀 변위 측정)

  • 박상욱;김대현;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.154-157
    • /
    • 2003
  • Precision displacement of less than a few nm resolution was measured in real-time using fiber optic EFPI sensor. The novel method for real-time processing of analyzing EFPI output signal was developed and verified. Linearity in the mean values of interferometric light intensity among adjacent fringes was shown, and the sinusoidal approximation algorithm that estimates past and coming fringe values was verified through the linearity. Real-time signal processing program was developed, and the intensity signal of the EFPI sensor was transformed to the phase shift with this program. The resolution below 0.4 ~ 10 nm in the displacement range of $0 ~ 300\mu\textrm{m}$ was obtained by reducing the photodetector noise using low-pass filter and signal averaging. The nano-translation stage with a Piezo-electric actuator and the EFPI sensor system was designed and tested. This stage successfully reached to the desired destination in $15\mu\textrm{m}$ range within 1 nm accuracy.

  • PDF

Characteristics analysis and Fabrication of Integrated Piezoresistive Temperature & Humidity Sensors (압저항형 온·습도 복합 센서 제작 및 특성 분석)

  • Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.31-36
    • /
    • 2014
  • In this paper, we developed an intergrated piezoresistive temperature and humidity sensor using nano-technology, and evaluated the properties. In the measuring range from $20^{\circ}C$ to $80^{\circ}C$, output sensitivity of temperature was about 0.75mV/$1^{\circ}C$. Output sensitivity of humidity was about 1.35mV/10%(RH). Therefore, developed sensor suggests that it is possible applicable to the general residential environment.

A Programming Model for USN Applications based on Nano-Qplus (Nano-Qplus기반의 USN 응용 프로그래밍 모델)

  • Lee, Woo-Jin;Kim, Ju-Il;Lee, Kwang-Yong;Chong, Ki-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.378-387
    • /
    • 2006
  • A programming model for ubiquitous sensor network (USN) applications based on Nano-Qplus is proposed. USN applications mean programs of nodes which are components of sensor network such as sensor, router, sink and actuator. Developers can automatically generate programs of USN applications by setting attributes values of nodes using a script after they model a sensor network. A script for setting attributes values of a node is proposed in this paper. The algorithm of automatic code generation is also described. Developers can easily implement USN applications even if they do not know details of low-level communication, data sharing, and collective operations because the applications are automatically generated from a script. They set only attributes values of nodes using the script. Efforts for USN applications development also are reduced because of automatic code generation. Furthermore, developers can correct errors of applications in the early stage of development through ear]y test based on rapid code generation.

Enhancement of Light Guiding Efficiency in CMOS Image Sensor by Introducing an Optical Thin Film (광학 박막을 채용한 CMOS 이미지 센서 픽셀의 수광 효율)

  • Kang, Myung-Hoon;Ko, Eun-Mi;Lee, Je-Won;Cho, Guan-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.57-60
    • /
    • 2009
  • We consider introducing an optical thin film to the light guiding wall of a pixel in order to enhance the light guiding efficiency of a CMOS image sensor. Simulating the reflectance as a function of the incidence angle using the Essential Macleod program, we find that the range of total internal reflection is greatly increased for several materials. Particularly when air is chosen as the thin film material, the critical angle of total internal reflection could be shifted to about 50 degrees.

Formation of metal nano particles on optical fiber for fiber optic localized surface plasmon resonance sensor (광섬유 국소화 표면 플라즈몬 공명 센서를 위한 광섬유 표면상의 금속 나노 입자 형성)

  • Lee, Hoon;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.95-99
    • /
    • 2008
  • Various etching methods of optical fiber and formation of metal nano particles on the optical fiber have been proposed for fabrication of fiber optic localized surface plasmon resonance (FO LSPR) biosensors. Different types of etched optical fiber are possible by removing the cladding of optical fiber using HF (hydrofluoric acid) solution and BHF (buffered hydrofluoric acid) solution, which results in improved surface roughness when BHF solution is used. Localized surface plasmon can be formed and measured by formation of silver and gold nano particles on the etched optical fiber. The characteristics of the etched optical fiber and metal nano particles on the etched surface of the optical fiber play a key role in dictating the sensitivity of the LSPR sensors, so that the proposed results can be expected to be applied for related research on fiber optic based biosensors.

Implementation of a Piezoresistive MEMS Cantilever for Nanoscale Force Measurement in Micro/Nano Robotic Applications

  • Kim, Deok-Ho;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.789-797
    • /
    • 2004
  • The nanoscale sensing and manipulation have become a challenging issue in micro/nano-robotic applications. In particular, a feedback sensor-based manipulation is necessary for realizing an efficient and reliable handling of particles under uncertain environment in a micro/nano scale. This paper presents a piezoresistive MEMS cantilever for nanoscale force measurement in micro robotics. A piezoresistive MEMS cantilever enables sensing of gripping and contact forces in nanonewton resolution by measuring changes in the stress-induced electrical resistances. The calibration of a piezoresistive MEMS cantilever is experimentally carried out. In addition, as part of the work on nanomanipulation with a piezoresistive MEMS cantilever, the analysis on the interaction forces between a tip and a material, and the associated manipulation strategies are investigated. Experiments and simulations show that a piezoresistive MEMS cantilever integrated into a micro robotic system can be effectively used in nanoscale force measurements and a sensor-based manipulation.