• Title/Summary/Keyword: Nano hair

Search Result 21, Processing Time 0.032 seconds

Survey of the Fabrication of Dry Adhesive Structures (건식부착물 제작에 대한 개관)

  • Cho, Young-Sam
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.112-115
    • /
    • 2009
  • In nature, some creatures have the ability to walk vertically or upside down on various natural surfaces. One of them, Tokay Gecko has billions of nano-hair at the epidermis of its digital. These nano hairs makes atomistic attractive force to the surface, therefore, it could walk and run on the vertical or upside surfaces. Recently, many researchers tried to fabricate the dry adhesive structure mimicking the nano-hair structure. in this study, I tried to survey these studies to discuss the direction of future fabrication works of dry adhesive structures.

Superhydrophobic nano-hair mimicking for water strider leg using CF4 plasma treatment on the 2-D and 3-D PTFE patterned surfaces

  • Shin, Bong-Su;Moon, Myoung-Woon;Kim, Ho-Young;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.365-365
    • /
    • 2010
  • Similar to the superhydrophobic surfaces of lotus leaf, water strider leg is attributed to hierarchical structure of micro pillar and nano-hair coated with low surface energy materials, by which water strider can run and even jump on the water surface. In order to mimick its leg, many effort, especially, on the fabrication of nanohairs has been made using several methods such as a capillarity-driven molding and lithography using poly(urethane acrylate)(PUA). However most of those effort was not so effective to create the similar structure due to its difficulty in the fabrication of nanoscale hairy structures with hydrophobic surface. In this study, we have selected a low surface energy polymeric material of polytetrafluoroethylene (PTFE, or Teflon) assisted with surface modification of CF4 plasma treatment followed by hydrophobic surface coating with pre-cursor of hexamethyldisiloxane (HMDSO) using a plasma enhanced chemical vapor deposition (PE-CVD). It was found that the plasma energy and duration of CF4 treatment on PTFE polymer could control the aspect ratio of nano-hairy structure, which varying with high aspect ratio of more than 20 to 1, or height of over 1000nm but width of 50nm in average. The water contact angle on pristine PTFE surface was measured as approximately $115^{\circ}$. With nanostructures by CF4 plasma treatment and hydrophobic coating of HMDSO film, we made a superhydrophobic nano-hair structure with the wetting angle of over $160^{\circ}C$. This novel fabrication method of nanohairy structures has been applied not only on 2-D flat substrate but also on 3-D substrates like wire and cylinder, which is similarly mimicked the water strider's leg.

  • PDF

Nano-technology after the year 2000

  • Ken Stout;Liam Blunt
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.21-23
    • /
    • 1996
  • Just as the transistor changed the face of electrical engineering and heralded the electronic and microprocessor era, a new technology, still in its infancy is likely to have an even larger impact on industry and society alike. This new technology which has already begun to make its impact on modern technology is called nano-technology. Nano-technology, derived from the Greek word, meaning - Dwarf, is related to the ability to manufacture, fabricate and measure in the nanometre precision range, which is 10$^{-9}$ parts of metre, a dimension which makes the diameter of a human hair appear huge by comparison.

  • PDF

Damage Prevention Effect of Green Tea Seed Oil on Colored and Decolored Hair (녹차씨 오일이 염색 및 탈색된 모발의 재손상 및 탈색 방지에 미치는 영향)

  • Min, Myung-Ja;Choi, Moon-Hee;Kim, Gwui Cheol;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.287-294
    • /
    • 2013
  • Stained and discolored hair will be damaged by the shampooing, daily UV disposal, and the use of hair dryer. Thus many studies about the effect of various natural substances on the re-secure the skin and scalp are recently reported. This study was carried out to investigate the effect of green tea (Camelloia sinensis) seed oil on colored (dyed) and decolored (bleached) hair. The beneficial effects of green tea seed oil are already well known, but little research has been done about the hair treatment and fade-resistant effect. Dyed and bleached hair was pretreated with green tea seed oil to determine the tensile strength and elongation of the hair, to analyze the hair surface using SEM, and to compare the color fade using spectrocolormeter. The results showed that the tensile strength increased with green tea seed oil pretreatment samples for virgin, dyed, and bleached hairs. Elongation showed the reverse results showing the presence of hair treatment effect. The results of the surface pre-treatment in all groups analyzed by SEM, the hair cuticle became sharper, so coating effect were identified with all samples. The value of the $L^*$, $a^*$, $b^*$ decreased with washed hairs damaged by UV irradiation and the values were decreased also in dyed and bleached hair. In summary, green tea seed oil prevent reinjury to the heat and UV rays for colored and decolored hairs. Cosmetic practice effects of the oil were identified in the field to be appropriate to the customer's skin and scalp that natural cosmetic oils would like to offer.

The Effect of LhGH on Hair Regeneration in C57BL/6CrN Mouse (LhGH가 마우스(C57BL/6CrN)의 모발 재성장에 미치는 영향)

  • Kim, Yong-Ju;Kim, Tae-Keun;Min, Byoung-Hoon;Kim, Soo-Jin
    • Applied Microscopy
    • /
    • v.41 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • Hair is an appendage of skin which protects the body from outer physical and chemical stimuli. Hair is generated from the hair follicle lying on a sunken basal layer of epidermis. Hair cycling, which regenerates hair follicles throughout the life time of the organism. Numerous kinds of factors which exist at the hair follicle have been reported to regulate hair cycling, Human growth hormone secreted from pituitary gland, initially demonstrated to accelerate organ's growth, has been reported to play a role in the biology of organ size determination. We investigated the effect of 6-histidines residues tagged at amino-terminus of human growth hormone using light and electronmicroscopic methods. Human growth hormone encapsulated in nano-liposome (LhGH) was used to find how LhGH affects hair follicle cycling of mouse (C57BL6/CrN). Distilled water as a negative control, 3% Minoxidil as a positive control, and LhGH were applied to mouse for weeks. LhGH increased the number of exposed hairs per given areas ($1mm^2$). This result was also confirmed using a different breed of mice which show natural hair loss in an old age (about 17 months after birth). When LhGH was applied for 3 weeks after natural hair loss, natural hair loss on these mice was prevented, However, the control group mice on which LhGH was not applied showed further hair loss. This result indicates that LhGH may stimulate hair cycling of mouse. In clusion, it is cleat that the LhGH increased the number of hair on mice and help the depilated skin to grow new hair follicles again.

Study on the Stability of Biotin-containing Nano-liposome (바이오틴 함유 나노리포좀의 안정성에 관한 연구)

  • Yang, Seong Jun;Kim, Tae Yang;Lee, Chun Mong;Lee, Kwang Sik;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.2
    • /
    • pp.133-145
    • /
    • 2020
  • This study utilized nano-liposomes for the purpose of stabilizing and increasing the solubility of biotin, a water-soluble active material with low solubility. The particle size, zeta potential, and polydispersity index were confirmed with a nano zetasizer. It was possible to manufacture nano liposomes at 100 to 250 nm of particle size and -80 to -30 mV of zeta potential. Dialysis membrane method (DMM) was used to measure the capsulation efficiency of biotin in biotin nano-liposomes, and results showed that pH increased biotin nano-liposomes had higher capsulation efficiency than normal biotin nano-liposome. Through this experiment, it was confirmed that the pH has a great influence on the stability of biotin nano-liposomes. In vitro franz diffusion cell method was used to measure in vitro skin absorption rate of biotin nano-liposomes. The shape of the formulation and biotin solubility in nano-liposome was observed by cryogenic transmission electron microscopy (cryo-TEM). Through this study, we confirmed that biotin, which is introduced as closely related to hair health, can be incorporated into a nano-liposome drug delivery system, to make biotin nano-liposome with improved solubility and precipitation problems.

Biomaterials-assisted spheroid engineering for regenerative therapy

  • Lee, Na-Hyun;Bayaraa, Oyunchimeg;Zechu, Zhou;Kim, Hye Sung
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.356-367
    • /
    • 2021
  • Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.

Nanoparticle Inducing Device for Effective Drug Delivery System (효과적인 약물전달 시스템을 위한 나노입자 유도 장치)

  • Lee, Chongmyeong;Han, Hyeonho;Jang, Byonghan;Oh, Eunseol;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.102-110
    • /
    • 2017
  • Cancer is one of the most challenging human diseases. Current clinical methods have limitations for early-stage cancer diagnosis and effective therapy. Moreover, current surgical methods to remove tumors are not precise enough and chemotherapy destroys normal tissues as well as malignant tumors, resulting in severe side effects such as hair loss, vomiting, diarrhea, and blood disorders. Recently, nanotechnology using nano-sized particles suggests advanced solutions to overcome the limitations. Various nanoparticles have been reported for more accurate diagnosis and minimized side effects. However, current nanoparticles still show limited targeting accuracy for cancer generally below 5% injection dosage. Therefore, herein we report a new nanoparticle inducing device(NID) to guide the nanoparticles externally by using both variable magnetic fields and blood flows. NID can be a promising approach to improve targeting accuracy for drug delivery using iron oxide nanoparticles.