DOI QR코드

DOI QR Code

Biomaterials-assisted spheroid engineering for regenerative therapy

  • Lee, Na-Hyun (Institute of Tissue Regeneration Engineering (ITREN), Dankook University) ;
  • Bayaraa, Oyunchimeg (Institute of Tissue Regeneration Engineering (ITREN), Dankook University) ;
  • Zechu, Zhou (Institute of Tissue Regeneration Engineering (ITREN), Dankook University) ;
  • Kim, Hye Sung (Institute of Tissue Regeneration Engineering (ITREN), Dankook University)
  • Received : 2021.04.20
  • Accepted : 2021.06.15
  • Published : 2021.07.31

Abstract

Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.

Keywords

Acknowledgement

This research was supported by the research fund of Dankook University in 2020.

References

  1. Iturriaga L, Hernaez-Moya R, Erezuma I, Dolatshahi-Pirouz A and Orive G (2018) Advances in stem cell therapy for cartilage regeneration in osteoarthritis. Expert Opin Biol Ther 18, 883-896 https://doi.org/10.1080/14712598.2018.1502266
  2. Watanabe Y, Harada N, Sato K, Abe S, Yamanaka K and Matushita T (2016) Stem cell therapy: is there a future for reconstruction of large bone defects? Injury 47, S47-S51
  3. Lee YB, Kim EM, Byun H et al (2018) Engineering spheroids potentiating cell-cell and cell-ECM interactions by selfassembly of stem cell microlayer. Biomaterials 165, 105-120 https://doi.org/10.1016/j.biomaterials.2018.02.049
  4. Lee JH, Han YS and Lee SH (2016) Long-duration three-dimensional spheroid culture promotes angiogenic activities of adipose-derived mesenchymal stem cells. Biomol Ther (Seoul) 24, 260-267 https://doi.org/10.4062/biomolther.2015.146
  5. Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M and Toietta G (2017) Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci 18, 2087 https://doi.org/10.3390/ijms18102087
  6. Amer MH, Rose FRAJ, Shakesheff KM, Modo M and White LJ (2017) Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regen Med 2, 23 https://doi.org/10.1038/s41536-017-0028-x
  7. Sandvig I, Gadjanski I, Vlaski-Lafarge M et al (2017) Strategies to enhance implantation and survival of stem cells after their injection in ischemic neural tissue. Stem Cells Dev 26, 554-565 https://doi.org/10.1089/scd.2016.0268
  8. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C and de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31, 108-115 https://doi.org/10.1016/j.tibtech.2012.12.003
  9. Mahmood TA, de Jong R, Riesle J, Langer R and van Blitterswijk CA (2004) Adhesion-mediated signal transduction in human articular chondrocytes: the influence of bio-material chemistry and tenascin-C. Exp Cell Res 301, 179-188 https://doi.org/10.1016/j.yexcr.2004.07.027
  10. Bierwolf J, Lutgehetmann M, Feng K et al (2011) Primary rat hepatocyte culture on 3D nanofibrous polymer scaffolds for toxicology and pharmaceutical research. Biotechnol Bioeng 108, 141-150 https://doi.org/10.1002/bit.22924
  11. Ryu NE, Lee SH and Park H (2019) Spheroid culture system methods and applications for mesenchymal stem cells. Cells 8, 1620 https://doi.org/10.3390/cells8121620
  12. Barthes J, Ozcelik H, Hindie M, Ndreu-Halili A, Hasan A and Vrana NE (2014) Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed Res Int 2014, 921905
  13. Edmondson R, Broglie JJ, Adcock AF and Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12, 207-218 https://doi.org/10.1089/adt.2014.573
  14. Kim SJ, Kim EM, Yamamoto M, Park H and Shin H (2020) Engineering multi-cellular spheroids for tissue engineering and regenerative medicine. Adv Healthc Mater, e2000608
  15. Liu D, Chen S and Win Naing M (2021) A review of manufacturing capabilities of cell spheroid generation technologies and future development. Biotechnol Bioeng 118, 542-554 https://doi.org/10.1002/bit.27620
  16. Bialkowska K, Komorowski P, Bryszewska M and Milowska K (2020) Spheroids as a type of three-dimensional cell cultures-examples of methods of preparation and the most important application. Int J Mol Sci 21, 6225 https://doi.org/10.3390/ijms21176225
  17. Kwon SH, Bhang SH, Jang HK, Rhim T and Kim BS (2015) Conditioned medium of adipose-derived stromal cell culture in three-dimensional bioreactors for enhanced wound healing. J Surg Res 194, 8-17 https://doi.org/10.1016/j.jss.2014.10.053
  18. Ong CS, Zhou X, Han J et al (2018) In vivo therapeutic applications of cell spheroids. Biotechnol Adv 36, 494-505 https://doi.org/10.1016/j.biotechadv.2018.02.003
  19. Mathur A, Ma Z, Loskill P, Jeeawoody S and Healy KE (2016) In vitro cardiac tissue models: current status and future prospects. Adv Drug Deliv Rev 96, 203-213 https://doi.org/10.1016/j.addr.2015.09.011
  20. Zhu L, Luo D and Liu Y (2020) Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci 12, 6 https://doi.org/10.1038/s41368-020-0073-y
  21. Ko JY, Park JW, Kim J and Im GI (2021) Characterization of adipose-derived stromal/stem cell spheroids versus single-cell suspension in cell survival and arrest of osteoarthritis progression. J Biomed Mater Res A 109, 869-878 https://doi.org/10.1002/jbm.a.37078
  22. Yang C, Tibbitt MW, Basta L and Anseth KS (2014) Mechanical memory and dosing influence stem cell fate. Nat Mater 13, 645-652 https://doi.org/10.1038/nmat3889
  23. Duval K, Grover H, Han LH et al (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda) 32, 266-277 https://doi.org/10.1152/physiol.00036.2016
  24. Jensen C and Teng Y (2020) Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7, 33 https://doi.org/10.3389/fmolb.2020.00033
  25. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ and Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015, 421746 https://doi.org/10.1155/2015/421746
  26. Perez JR, Kouroupis D, Li DJ, Best TM, Kaplan L and Correa D (2018) Tissue engineering and cell-based therapies for fractures and bone defects. Front Bioeng Biotechnol 6, 105 https://doi.org/10.3389/fbioe.2018.00105
  27. Winkler T, Sass FA, Duda GN and Schmidt-Bleek K (2018) A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 7, 232-243 https://doi.org/10.1302/2046-3758.73.BJR-2017-0270.R1
  28. Younger EM and Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3, 192-195 https://doi.org/10.1097/00005131-198909000-00002
  29. Oryan A, Kamali A, Moshiri A and Baghaban Eslaminejad M (2017) Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence? Cells Tissues Organs 204, 59-83 https://doi.org/10.1159/000469704
  30. Murphy KC, Fang SY and Leach JK (2014) Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell Tissue Res 357, 91-99 https://doi.org/10.1007/s00441-014-1830-z
  31. Ho SS, Keown AT, Addison B and Leach JK (2017) Cell migration and bone formation from mesenchymal stem cell spheroids in alginate hydrogels are regulated by adhesive ligand density. Biomacromolecules 18, 4331-4340 https://doi.org/10.1021/acs.biomac.7b01366
  32. Chahal S, Kumar A and Hussian FSJ (2019) Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J Biomater Sci Polym Ed 30, 1308-1355 https://doi.org/10.1080/09205063.2019.1630699
  33. Mao Y, Zhao Y, Guan J et al (2020) Electrospun fibers: an innovative delivery method for the treatment of bone diseases. Expert Opin Drug Deliv 17, 993-1005 https://doi.org/10.1080/17425247.2020.1767583
  34. Bhattarai DP, Aguilar LE, Park CH and Kim CS (2018) A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes (Basel) 8, 62 https://doi.org/10.3390/membranes8030062
  35. Hasani-Sadrabadi MM, Sarrion P, Pouraghaei S et al (2020) An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Sci Transl Med 12, 534
  36. Whitehead J, Griffin KH, Gionet-Gonzales M, Vorwald CE, Cinque SE and Leach JK (2021) Hydrogel mechanics are a key driver of bone formation by mesenchymal stromal cell spheroids. Biomaterials 269, 120607 https://doi.org/10.1016/j.biomaterials.2020.120607
  37. Whitehead J, Kothambawala A and Leach JK (2019) Morphogen delivery by osteoconductive nanoparticles instructs stromal cell spheroid phenotype. Adv Biosyst 3, 1900141 https://doi.org/10.1002/adbi.201900141
  38. Ahmad T, ByunH, Lee J et al (2020) Stem cell spheroids incorporating fibers coated with adenosine and polydopamine as a modular building blocks for bone tissue engineering. Biomaterials 230, 119652 https://doi.org/10.1016/j.biomaterials.2019.119652
  39. Lee W, Choi JH, Lee S, Song JE and Khang G (2020) Fabrication and characterization of silk fibroin microfiber-incorporated bone marrow stem cell spheroids to promote cell-cell interaction and osteogenesis. ACS Omega 5, 18021-18027 https://doi.org/10.1021/acsomega.0c01415
  40. Bratt-Leal AM, Carpenedo RL, Ungrin MD, Zandstra PW and McDevitt TC (2011) Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation. Biomaterials 32, 48-56 https://doi.org/10.1016/j.biomaterials.2010.08.113
  41. Ahmad T, Shin HJ, Lee J et al (2018) Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells. Acta Biomater 74, 464-477 https://doi.org/10.1016/j.actbio.2018.05.035
  42. Lee J, Lee S, Ahmad T et al (2020) Human adipose-derived stem cell spheroids incorporating platelet-derived growth factor (PDGF) and bio-minerals for vascularized bone tissue engineering. Biomaterials 255, 120192 https://doi.org/10.1016/j.biomaterials.2020.120192
  43. Im GI and Cho CS (2019) Updates in cartilage tissue regeneration. Tissue Eng Regen Med 16, 325-326 https://doi.org/10.1007/s13770-019-00211-0
  44. Martin AR, Patel JM, Zlotnick HM, Carey JL and Mauck RL (2019) Emerging therapies for cartilage regeneration in currently excluded 'red knee' populations. NPJ Regen Med 4, 12 https://doi.org/10.1038/s41536-019-0074-7
  45. Antons J, Marascio MGM, Nohava J et al (2018) Zone-dependent mechanical properties of human articular cartilage obtained by indentation measurements. J Mater Sci Mater Med 29, 57 https://doi.org/10.1007/s10856-018-6066-0
  46. Prein C, Warmbold N, Farkas Z, Schieker M, Aszodi A and Clausen-Schaumann H (2016) Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy. Matrix Biol 50, 1-15 https://doi.org/10.1016/j.matbio.2015.10.001
  47. Mansfield JC, Bell JS and Winlove CP (2015) The micromechanics of the superficial zone of articular cartilage. Osteoarthritis Cartilage 23, 1806-1816 https://doi.org/10.1016/j.joca.2015.05.030
  48. Tacchetti C, Tavella S, Dozin B, Quarto R, Robino G and Cancedda R (1992) Cell condensation in chondrogenic differentiation. Exp Cell Res 200, 26-33 https://doi.org/10.1016/S0014-4827(05)80067-9
  49. Tuli R, Tuli S, Nandi S et al (2003) Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 278, 41227-41236 https://doi.org/10.1074/jbc.M305312200
  50. Jang Y, Jung H and Ju JH (2017) Chondrogenic differentiation induction of adipose-derived stem cells by centrifugal gravity. J Vis Exp 120, 54934
  51. Zhang L, Su P, Xu C, Yang J, Yu W and Huang D (2010) Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems. Biotechnol Lett 32, 1339-1346 https://doi.org/10.1007/s10529-010-0293-x
  52. Bartosh TJ, Ylostalo JH, Mohammadipoor A et al (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A 107, 13724-13729 https://doi.org/10.1073/pnas.1008117107
  53. Yoon HH, Bhang SH, Shin JY, Shin J and Kim BS (2012) Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells. Tissue Eng Part A 18, 1949-1956 https://doi.org/10.1089/ten.tea.2011.0647
  54. Fayol D, Frasca G, Le Visage C, Gazeau F, Luciani N and Wilhelm C (2013) Use of magnetic forces to promote stem cell aggregation during differentiation, and cartilage tissue modeling. Adv Mater 25, 2611-2616 https://doi.org/10.1002/adma.201300342
  55. Zhang K, Yan S, Li G, Cui L and Yin J (2015) In-situ birth of MSCs multicellular spheroids in poly(L-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration. Biomaterials 71, 24-34 https://doi.org/10.1016/j.biomaterials.2015.08.037
  56. Wang W, Rigueur D and Lyons KM (2014) TGFβ signaling in cartilage development and maintenance. Birth Defects Res C Embryo Today 102, 37-51 https://doi.org/10.1002/bdrc.21058
  57. Xia P, Wang X, Qu Y et al (2017) TGF-beta1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsedultrasound through the integrin-mTOR signaling pathway. Stem Cell Res Ther 8, 281 https://doi.org/10.1186/s13287-017-0733-9
  58. Yoon HH, Bhang SH, Kim T, Yu T, Hyeon T and Kim B-S (2014) Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell-adhesion substrate and growth factor-delivery carrier. Adv Funct Mater 24, 6455-6464 https://doi.org/10.1002/adfm.201400793
  59. Kim IG, Ko J, Lee HR, Do SH and Park K (2016) Mesenchymal cells condensation-inducible mesh scaffolds for cartilage tissue engineering. Biomaterials 85, 18-29 https://doi.org/10.1016/j.biomaterials.2016.01.048
  60. Song Y, Zhang TJ, Li Y and Gao Y (2020) Mesenchymal stem cells decrease M1/M2 ratio and alleviate inflammation to improve limb ischemia in mice. Med Sci Monit 26, e923287
  61. Yin C, Liang Y, Zhang J et al (2016) Umbilical cordderived mesenchymal stem cells relieve hindlimb ischemia through enhancing angiogenesis in tree shrews. Stem Cells Int 2016, 9742034
  62. Yeh H-Y, Liu B-H, Sieber M and Hsu S-h (2014) Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics 15, 10 https://doi.org/10.1186/1471-2164-15-10
  63. Kim S, Han YS, Lee JH and Lee SH (2018) Combination of MSC spheroids wrapped within autologous composite sheet dually protects against immune rejectionand enhances stem cell transplantation efficacy. Tissue Cell 53, 93-103 https://doi.org/10.1016/j.tice.2018.06.005
  64. Park J, Choe G, Oh S and Lee JY (2020) In situ formation of proangiogenic mesenchymal stem cell spheroids in hyaluronic acid/alginate core-shell microcapsules. ACS Biomater Sci Eng 6, 6938-6948 https://doi.org/10.1021/acsbiomaterials.0c01489
  65. Hong Y, Chen J, Fang H et al (2020) All-in-one hydrogel realizing adipose-derived stem cell spheroid production and in vivo injection via "Gel-Sol" transition for angiogenesis in hind limb ischemia. ACS Appl Mater Interfaces 12, 11375-11387 https://doi.org/10.1021/acsami.9b23534
  66. Willenborg S, Lucas T, van Loo G et al (2012) CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120, 613-625 https://doi.org/10.1182/blood-2012-01-403386
  67. Jetten N, Donners MM, Wagenaar A et al (2013) Local delivery of polarized macrophages improves reperfusion recovery in a mouse hind limb ischemia model. PLoS One 8, e68811 https://doi.org/10.1371/journal.pone.0068811
  68. Ran P, Chen W, Wei J et al (2020) Macrophage spheroids with chronological phenotype shifting to promote therapeutic angiogenesis in critical limb ischemia. ACS Appl Bio Mater 3, 3707-3717 https://doi.org/10.1021/acsabm.0c00333
  69. Kieken F, Mutsaers N, Dolmatova E et al (2009) Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ Res 104, 1103-1112 https://doi.org/10.1161/CIRCRESAHA.108.190454
  70. Richards DJ, Tan Y, Coyle R et al (2016) Nanowires and Electrical Stimulation Synergistically Improve Functions of hiPSC Cardiac Spheroids. Nano Lett 16, 4670-4678 https://doi.org/10.1021/acs.nanolett.6b02093
  71. Tan Y, Richards D, Xu R et al (2015) Silicon nanowire-induced maturation of cardiomyocytes derived from human induced pluripotent stem cells. Nano Lett 15, 2765-2772 https://doi.org/10.1021/nl502227a
  72. Park J, Kim YS, Ryu S et al (2015) Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and gap junction protein. Adv Funct Mater 25, 2590-2600 https://doi.org/10.1002/adfm.201500365
  73. DiMeglio LA, Evans-Molina C and Oram RA (2018) Type 1 diabetes. The Lancet 391, 2449-2462 https://doi.org/10.1016/S0140-6736(18)31320-5
  74. Akolpoglu MB, Inceoglu Y, Bozuyuk U et al (2021) Recent advances in the design of implantable insulin secreting heterocellular islet organoids. Biomaterials 269, 120627 https://doi.org/10.1016/j.biomaterials.2020.120627
  75. Vantyghem M-C, de Koning EJP, Pattou F and Rickels MR (2019) Advances in β-cell replacement therapy for the treatment of type 1 diabetes. The Lancet 394, 1274-1285 https://doi.org/10.1016/S0140-6736(19)31334-0
  76. Foster GA and Garcia AJ (2017) Bio-synthetic materials for immunomodulation of islet transplants. Adv Drug Deliv Rev 114, 266-271 https://doi.org/10.1016/j.addr.2017.05.012
  77. Llacua LA, Faas MM and de Vos P (2018) Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia 61, 1261-1272 https://doi.org/10.1007/s00125-017-4524-8
  78. Bochenek MA, Veiseh O, Vegas AJ et al (2018) Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat Biomed Eng 2, 810-821 https://doi.org/10.1038/s41551-018-0275-1
  79. Coronel MM, Martin KE, Hunckler MD et al (2020) Immunotherapy via PD-L1-presenting biomaterials leads to long-term islet graft survival. Sci Adv 6, eaba5573 https://doi.org/10.1126/sciadv.aba5573
  80. Yang J, Jiang S, Guan Y et al (2019) Pancreatic islet surface engineering with a starPEG-chondroitin sulfate nanocoating. Biomater Sci 7, 2308-2316 https://doi.org/10.1039/C9BM00061E
  81. Headen DM, Woodward KB, Coronel MM et al (2018) Local immunomodulation Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat Mater 17, 732-739 https://doi.org/10.1038/s41563-018-0099-0
  82. Liu JMH, Zhang J, Zhang X et al (2016) Transforming growth factor-beta 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets. Biomaterials 80, 11-19 https://doi.org/10.1016/j.biomaterials.2015.11.065
  83. Jiang K, Chaimov D, Patel SN et al (2019) 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials 198, 37-48 https://doi.org/10.1016/j.biomaterials.2018.08.057
  84. Daoud J, Petropavlovskaia M, Rosenberg L and Tabrizian M (2010) The effect of extracellular matrix components on the preservation of human islet function in vitro. Biomaterials 31, 1676-1682 https://doi.org/10.1016/j.biomaterials.2009.11.057
  85. Goh SK, Bertera S, Olsen P et al (2013) Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials 34, 6760-6772 https://doi.org/10.1016/j.biomaterials.2013.05.066
  86. Lee KY and Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37, 106-126 https://doi.org/10.1016/j.progpolymsci.2011.06.003
  87. Radu RG, Fujimoto S, Mukai E et al (2005) Tacrolimus suppresses glucose-induced insulin release from pancreatic islets by reducing glucokinase activity. Am J Physiol Endocrinol Metab 288, E365-371 https://doi.org/10.1152/ajpendo.00390.2004
  88. Ji S, Zhu Z, Sun X and Fu X (2021) Functional hair follicle regeneration: an updated review. Signal Transduct Target Ther 6, 66 https://doi.org/10.1038/s41392-020-00441-y
  89. Stenn KS and Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81, 449-494 https://doi.org/10.1152/physrev.2001.81.1.449
  90. Rahmani W, Abbasi S, Hagner A et al (2014) Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev Cell 31, 543-558 https://doi.org/10.1016/j.devcel.2014.10.022
  91. Huang YC, Chan CC, Lin WT et al (2013) Scalable production of controllable dermal papilla spheroids on PVA surfaces and the effects of spheroid size on hair follicle regeneration. Biomaterials 34, 442-451 https://doi.org/10.1016/j.biomaterials.2012.09.083
  92. Zhang K, Bai X, Yuan Z et al (2020) Cellular nanofiber structure with secretory activity-promoting characteristics for multicellular spheroid formation and hair follicle regeneration. ACS Appl Mater Interfaces 12, 7931-7941 https://doi.org/10.1021/acsami.9b21125
  93. Wang J, Miao Y, Huang Y et al (2018) Bottom-up nanoencapsulation from single cells to tunable and scalable cellular spheroids for hair follicle regeneration. Adv Healthc Mater 7, 1700447 https://doi.org/10.1002/adhm.201700447
  94. Wong VW, Akaishi S, Longaker MT and Gurtner GC (2011) Pushing back: wound mechanotransduction in repair and regeneration. J Invest Dermatol 131, 2186-2196 https://doi.org/10.1038/jid.2011.212
  95. Vining KH and Mooney DJ (2017) Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 18, 728-742 https://doi.org/10.1038/nrm.2017.108
  96. Nowell CS, Odermatt PD, Azzolin L et al (2016) Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat Cell Biol 18, 168-180 https://doi.org/10.1038/ncb3290
  97. Meli VS, Atcha H, Veerasubramanian PK et al (2020) YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Sci Adv 6, eabb8471 https://doi.org/10.1126/sciadv.abb8471