• Title/Summary/Keyword: Nano crystallization

Search Result 137, Processing Time 0.024 seconds

Improvement of Dissolution Rate for Zaltoprofen Tablets Using CMC and HPMC (CMC와 HPMC를 이용한 잘토프로펜 정제의 용출률 개선)

  • Park, Hyun-Jin;Hong, Hee-Kyung;Song, Yi-Seul;Hong, Min-Sung;Seo, Han-Sol;Hong, Dong-Hyun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.300-305
    • /
    • 2010
  • Zaltoprofen is a propionic acid derivative of non-steroidal anti-inflammatory drugs (NSAIDs) and has been widely used in the treatment of a number of arthritic conditions or lumbago. Zaltoprofen has low water solubility and low bioavailability, therefore great efforts have been devoted to enhance the extent of drug adsorption. In this study, zaltoprofen was formulated into a tablet to enhance the bioavailability and to achieve sustained-release using additives such as lactose monohydrate, carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPMC). Fourier transform-infrared (FTIR) and differential scanning calorimeter (DSC) were employed to study the structure and crystallization of zaltoprofen in the tablet with various contents of additives. It was found that additives had interactions with zaltoprofen and inhibited the crystallization of zaltoprofen. Tablets containing low viscosity HPMC showed a higher release than those containing high viscosity HPMC. Also, as the amount of CMC increased zaltoprofen release increased.

Synthesis of ZnWO4 Nanopowders by Polymerized complex Method (Polymerized complex법에 의한 ZnWO4 nanopower의 제조)

  • Ryu, Jeong-Ho;Lim, Chang-Sung;Auh, Keun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.321-326
    • /
    • 2002
  • ZnWO$_4$ nano-powders were successfully prepared by polymerized complex method using zinc nitrate and tungstic acid as starting materials. In order to investigate the thermal decomposition and crystallization process, the polymeric precursors were heat-treated at temperatures from 300 to 600$^{\circ}$C for 3 h, and the heat-treated powders were characterized by XRD and FTIR. The surface morphology of the heat-treated powders were observed using SEM and TEM. The crystallite size was measured by X-ray analysis. Crystallization of the ZnWO$_4$ powders were detected at 400$^{\circ}$C and entirely completed at a temperature of 600$^{\circ}$C. The particles heat-treated 400 and 500$^{\circ}$C showed primarily co-mixed morphology with spherical and silkworm-like forms, while the particles heat-treated at 600$^{\circ}$C showed more homogeneous morphology. The average crystalline size were 19.9∼24.nm showing an ordinary tendency to increase with the temperatures from 400 to 600$^{\circ}$C.

Low temperature synthesis of $ZnWO_4$ nanopowders using polymeric complex precursor (착체중합법에 의한 $ZnWO_4$ 나노분말의 저온합성)

  • 류정호;임창성;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.133-137
    • /
    • 2002
  • $ZnWO_4$ nano-powders were successfully synthesized at low temperature by polymerized complex method using zinc acetate and tungstic acid as starting materials. The polymeric precursors were heat-treated at temperatures from 300 to $600^{\circ}C$ for 3 h. The precursors and heat-treated powders were evaluated for crystallization process, thermal decomposition, surface morphology and crystallite size. Crystallization of the $ZnWO_4$ powders were detected at $400^{\circ}C$ and entirely completed at a temperature of $600^{\circ}C$. The particles heat-treated at $400^{\circ}C$ showed primarily co-mixed morphology with spherical and silk-worm-like forms, while the particles heat-treated at $500^{\circ}C$ showed more homogeneous morphology. The average crystalline sizes were 17.62~24.71 nm showing an ordinary tendency to increase with the temperatures from 400 to $600^{\circ}C$.

Effect of Annealing Temperature on the Electromagnetic Wave Absorbing Properties of Nanocrystalline Soft-magnetic Alloy Powder (연자성 나노결정합금 분말의 열처리 온도에 의한 전자파 흡수 특성의 영향)

  • Hong, S.H.;Sohn, K.Y.;Park, W.W.;Moon, B.G.;Song, Y.S.
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.18-22
    • /
    • 2008
  • The electromagnetic (EM) wave absorption properties with a variation of crystallization annealing temperature have been investigated in a sheet-type absorber using the $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy powder. With increasing the annealing temperature the complex permeability (${\mu}_r$), permittivity (${\varepsilon}_r$) and power absorption changed. The EM wave absorber shows the maximum permeability and permittivity after the annealing at $610^{\circ}C$ for 1 hour, and its calculated power absorption is above 80% of input power in the frequency range over 1.5 GHz.

Phase stability and Morphology of high-k gate stack of $Si/SiO_2/HfO_2$ and $Si/SiO_2/ZrO_2$

  • Lee, Seung-Hwan;Bobade, Santosh M.;Yoo, W.J.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.118-119
    • /
    • 2007
  • Phase stability and morphological investigation on the $Si/SiO_2/HfO_2$ and $Si/SiO_2/ZrO_2$ stack are presented. Thermal stability of $HfO_2$ and $ZrO_2$ determines the quality of interface and subsequently the performance of device. The stacks have been fabricated and annealed at $1000^{\circ}C$ for various time. In evolution of crystalline phase and morphology (electrical and geometrical) of high-k materials, annealing time and process are observed to be crucial factors. The crystallization of some phase has been observed in the case of $Si/SiO_2/HfO_2$. The chemical environment around Zr and Hf in respective samples is observed to be different.

  • PDF

Effect of the Surface Oxidation on the Electromagnetic Wave Absorption Behavior of a Fe-based Nanocrystalline Alloy (Fe계 나노결정립 분말의 표면 산화에 따른 전자파 흡수특성)

  • Koo, S.K.;Woo, S.J.;Moon, B.G.;Song, Y.S.;Park, W.W.;Sohn, K.Y.
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.303-308
    • /
    • 2007
  • The oxidation of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline powder has been conducted to investigate its influence on the electromagnetic wave absorption characteristics of the soft magnetic material. Oxidation occurred primarily on the surface of nanocrystals. Oxidation reduced the real part of complex permeability due to the reduction of the relative volume of the powder, which otherwise contributes to the permeability. Oxidation reduced the absorption efficiency of the sheet at frequencies over 1GHz, indicating that the relative contribution of skin depth increments to the absorption was not significant. The pulverization and milling process lowered the optimum crystallization temperature of the material by $40{\sim}50^{\circ}C$ because of the internal energy accumulated during the fragmentation and powder thinning processes.

Effect of Ca and Al Additions on the Magnetic Properties of Nanocrytalline Fe-Si-B-Nb-Cu Alloy Powder Cores

  • Moon, Sun Gyu;Kim, Ji Seung;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.192-196
    • /
    • 2016
  • The Fe-Si-B-Nb-Cu alloys containing Ca and Al were rapidly solidified to thin ribbons by melt-spinning. The ribbons were ball-milled to make powders, and then mixed with 1 wt.% water glass and 1.5 wt.% lubricant. The mixed powders were burn-off, and then compacted to form toroidal-shaped cores, which were heat treated to crystallize the nano-grain structure and to remove residual stress of material. The characteristics of the powder cores were analyzed using a differential scanning calorimetry (DSC) and a B-H meter. The microstructures were observed using transmission electron microscope (TEM). The optimized soft magnetic properties (${\mu}_i$ and $P_{cv}$) of the powder cores were obtained from the Ca and Al containing alloys after annealing at $530^{\circ}C$ for 1 h. The core loss of Fe-Si-B-Nb-Cu-based powder cores was reduced by the addition of Ca element, and the initial permeability increased due to the addition of Al element.

Effect of Ag on microstructural behaviour of Nanocrystalline $Fe_{87-x}Zr_7B_6Ag_x$($0{\leq}x_{Ag}{\leq}4$) Magnetic Thin Films Materials

  • Lee, W.J.;Min, B.K.;Song, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.3-6
    • /
    • 2002
  • Effect of Ag additive element on microstructure of $Fe_{87-x}Zr_7B_6Ag_x$, magnetic thin films on Si(001) substrates has been investigated using Transmission Electron Microscopy(TEM) and X-ray Diffraction(XRD). All samples with additive Ag element were made by DC-sputtering and subjected to annealing treatments of $300^{\circ}C{\siim}600^{\circ}C$ for 1 hr. TEM and XRD showed that perfectly amorphous state in Ag-free Fe-based films was observed in as-deposited condition. The as-deposited Fe-based films with the presence of Ag constituent have a mixture of Fe-based amorphous and nano-sized Ag crystalline phases. In this case, additive element, Ag was soluted into Fe-based matrix. With the increase in additive element, Ag, insoluble nano-crystalline Ag particles were dispersed in the Fe-based amorphous matrix. Crystallization of Fe-based amorphous phase in the matrix of $Fe_{82}Zr_7B_6Ag_5$ thin films occurred at an annealing temperature of $400^{\circ}C$. Upon annealing, the amorphous-Ag crystalline state of Fe-Zr-B-Ag films was transformed into the mixture of Ag crystalline phase + Fe-based amorphous phase + ${\alpha}$-Fe cluster followed by the crystallization process of ${\alpha}$-Fe nanocrystalline + Ag crystalline phases.

  • PDF

Morphology Development in a Range of Nanometer to Micrometer in Sulfonated Poly(ethylene terephthalate) Ionomer

  • Lee, Chang-Hyung;Inoue, Takashi;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.580-586
    • /
    • 2002
  • We investigated the effect of ionic component on crystalline morphology development during isothermal annealing in a sodium neutralized sulfonated poly(ethylene terephthalate) ionomer (Ion-PET) by time-resolved small-angle x-ray scattering (TR-SAX S) using synchrotron radiation. At early stage in Ion-PET, SAXS intensity at a low annealing temperature (Ta = 120 $^{\circ}C)$ decreased monotonously with scattering angle for a while. Then SAXS profile showed a peak and the peak position progressively moved to wider angles with isothermal annealing time. Finally, the peak intensity decreased, shifting the peak angle to wider angle. It is revealed that ionic aggregates (multiplets structure) of several nm, calculated by Debye-Bueche plot, are formed at early stage. They seem to accelerate the crystallization rate and make fine crystallites without spherulite formation (supported by optical microscopy observation). From decrease of peak intensity in SAXS,it is suggested that new lamellae are inserted between the preformed lamellae so that the concentration of ionic multiplets in amorphous region decreases to lower the electron density difference between lamellar crystal and amorphous region. In addition, analysis on the annealing at a high temperature (Ta = 210 $^{\circ}C)$ by optical microscopy, light scattering and transmission electron microscopy shows a formation of spherulite, no ionic aggregates, the retarded crystallization rate and a high level of lamellar orientation.

Deformation Behavior of a $Zr_{55}Al_{10}Ni_5Cu_{30}$ Bulk Metallic Glass at High Temperatures (고온에서 $Zr_{55}Al_{10}Ni_5Cu_{30}$ 벌크 유리금속의 변형거동)

  • Jeong, Young-Jin;Kim, Ki-Hyun;Oh, Sang-Yeob;Shin, Hyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.342-347
    • /
    • 2004
  • The deformation behavior of a $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass under tensile loading at different range of strain rates and temperatures between 680 K and 740 K were investigated. The variation in the deformation behavior of $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass which resulted from the crystallization induced during testing was reported. The$Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass has showed either homogeneous or inhomogeneous deformation depending on test condition. It exhibited a maximum elongation of about 560 % at the condition of $407^{\circ}C{\times}\;10^{-4}/s$. The flow behavior exhibited three different types and the flow stress became lower at higher temperatures and lower strain rates. The increase of the time elapsed during heating resulted in the partial crystallization of bulk metallic glass phase and eventually strain hardening and brittle fracture.

  • PDF