Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.2.192

Effect of Ca and Al Additions on the Magnetic Properties of Nanocrytalline Fe-Si-B-Nb-Cu Alloy Powder Cores  

Moon, Sun Gyu (Department of Nano System Engineering, Inje University)
Kim, Ji Seung (Department of Nano System Engineering, Inje University)
Sohn, Keun Yong (Department of Nano System Engineering, Inje University)
Park, Won-Wook (Department of Nano System Engineering, Inje University)
Publication Information
Abstract
The Fe-Si-B-Nb-Cu alloys containing Ca and Al were rapidly solidified to thin ribbons by melt-spinning. The ribbons were ball-milled to make powders, and then mixed with 1 wt.% water glass and 1.5 wt.% lubricant. The mixed powders were burn-off, and then compacted to form toroidal-shaped cores, which were heat treated to crystallize the nano-grain structure and to remove residual stress of material. The characteristics of the powder cores were analyzed using a differential scanning calorimetry (DSC) and a B-H meter. The microstructures were observed using transmission electron microscope (TEM). The optimized soft magnetic properties (${\mu}_i$ and $P_{cv}$) of the powder cores were obtained from the Ca and Al containing alloys after annealing at $530^{\circ}C$ for 1 h. The core loss of Fe-Si-B-Nb-Cu-based powder cores was reduced by the addition of Ca element, and the initial permeability increased due to the addition of Al element.
Keywords
nanocrystalline; crystallization; grain size; permeability; coercivity; core loss;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. Duwez, Asm Trans Quart. 60, 605 (1967).
2 M. Mitera, M. Naka, T. Masumoto, N. Kazama, and K. Watanabe, Phys. Status Solidi A 49, K163 (1978).   DOI
3 F. Luborsky, J. Becker, J. L. Walter, and H. H. Liebermann, IEEE Trans. Magn. 15, 1146 (1979).   DOI
4 A. Inoue, T. Masumoto, M. Kikuchi, and T. Minemura, Sci. Rep. Res. Inst. Tohoku Univ., A 27, 127 (1979).
5 M. Mitera, T. Masumoto, and N. Kazama, J. Appl. Phys. 50, 7609 (1979).   DOI
6 M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater Sci. 44, 291 (1999).   DOI
7 R. Hasegawa, J. Non-Cryst. Solids 287, 405 (2001).   DOI
8 Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).   DOI
9 Y. Yoshizawa and K. Yamauchi, Mater. Trans., JIM 31, 307 (1990).   DOI
10 Y. Yoshizawa and K. Yamauchi, IEEE Trans. Magn. 25, 3324 (1989).   DOI
11 K. Suzuki, N. Kataoka, A. Inoue, A. Makino, and T. Masumoto, Mater. Trans., JIM 31, 743 (1990).   DOI
12 Y. Fujii, H. Fujita, A. Seki, and T. Tomida, J. Appl. Phys. 70, 6241 (1991).   DOI
13 K. Suzuki, A. Makino, A. Inoue, and T. Masumoto, Sci. Rep. Res. Inst. Tohoku Univ., A 39, 133 (1994).
14 A. Makino, A. Inoue, and T. Masumoto, Mater. Trans., JIM 36, 924 (1995).   DOI
15 A. Makino, T. Hatanai, Y. Naitoh, T. Bitoh, A. Inoue, and T. Masumoto, IEEE Trans. Magn. 33, 3793 (1997).   DOI
16 G. Herzer, Acta Mater. 61, 718 (2013).   DOI
17 G. Herzer, Mater. Sci. Eng., A 133, 1 (1991).   DOI
18 S. Flohrer, R. Schafer, and G. Herzer, J. Non-Cryst. Solids 354, 5097 (2008).   DOI
19 G. Herzer, S. Flohrer, and C. Polak, IEEE Trans. Magn. 46, 341 (2010).   DOI
20 K. Hono, A. Inoue, and T. Sakurai, Appl. Phys. Lett. 58, 2180 (1991).   DOI
21 G. Herzer, Handbook of Magnetic Materials 10, 415 (1997).   DOI
22 K. Hono, D. Ping, M. Ohnuma, and H. Onodera, Acta Mater. 47, 997 (1999).   DOI
23 G. Herzer, V. Budinsky, and C. Polak, Phys. Status Solidi B 248, 2382 (2011).   DOI
24 S. E. Lyshevski and K. S. Martirosyan: Proc. 11th IEEE Int. Conf. Nanotechnol. (IEEE'11) 1252 (2011).
25 J. Park and M. Allen, J. Micromech. Microeng. 8, 307 (1998).   DOI
26 A. Kordecki and B. Weglinski, Powder Metall. 33, 151 (1990).   DOI
27 A. Jack, Conf. Electrical Machines (ICEM'98), 1441 (1998).
28 T. Lipo, S. Madani, R. White, and W. Ouyang, 11th Int. Power Electronics and Motion Control Conf. (EPEPEMC 2004) (2004).
29 G. Herzer, J. Magn. Magn. Mater. 157, 133 (1996).
30 M. Persson, P. Jansson, A. Jack, and B. Mecrow, Hoganeas Iron Powder Information (PM95-4), 8 (1995).
31 S. K. Nam, S. G. Moon, K. Y. Sohn, and W. W. Park, J. Magn. 19, 327 (2014).   DOI
32 M. R. Kim, S. I. Kim, K. S. Kim, K. Y. Sohn, and W. W. Park, Met. Mater. Int. 18, 185 (2012).   DOI
33 Y. Yoshizawa and K. Yamauchi, Mater. Sci. Eng., A 133, 176 (1991).   DOI
34 B. Tate, B. Parmar, I. Todd, H. Davies, M. Gibbs, and R. Major, J. Appl. Phys. 83, 6335 (1998).   DOI
35 S. Lim, W. Pi, T. Noh, H. Kim, and I. Kang, J. Appl. Phys. 73, 6591 (1993).   DOI
36 A. Zorkovska, J. Kovac, P. Sovak, P. Petrovic, and M. Konc, J. Magn. Magn. Mater. 215, 492 (2000).
37 P. Warren, I. Todd, H. Davies, A. Cerezo, M. Gibbs, D. Kendall, and R. Major, Scr. Mater. 41, 1223 (1999).   DOI
38 A. Inoue, A. Kitamura, and T. Masumoto, J. Mater. Sci. 16, 1895 (1981)   DOI
39 G. Herzer, IEEE Trans. Magn. 25, 3327 (1989).   DOI