DOI QR코드

DOI QR Code

Effect of Ca and Al Additions on the Magnetic Properties of Nanocrytalline Fe-Si-B-Nb-Cu Alloy Powder Cores

  • Moon, Sun Gyu (Department of Nano System Engineering, Inje University) ;
  • Kim, Ji Seung (Department of Nano System Engineering, Inje University) ;
  • Sohn, Keun Yong (Department of Nano System Engineering, Inje University) ;
  • Park, Won-Wook (Department of Nano System Engineering, Inje University)
  • Received : 2015.11.10
  • Accepted : 2016.04.08
  • Published : 2016.06.30

Abstract

The Fe-Si-B-Nb-Cu alloys containing Ca and Al were rapidly solidified to thin ribbons by melt-spinning. The ribbons were ball-milled to make powders, and then mixed with 1 wt.% water glass and 1.5 wt.% lubricant. The mixed powders were burn-off, and then compacted to form toroidal-shaped cores, which were heat treated to crystallize the nano-grain structure and to remove residual stress of material. The characteristics of the powder cores were analyzed using a differential scanning calorimetry (DSC) and a B-H meter. The microstructures were observed using transmission electron microscope (TEM). The optimized soft magnetic properties (${\mu}_i$ and $P_{cv}$) of the powder cores were obtained from the Ca and Al containing alloys after annealing at $530^{\circ}C$ for 1 h. The core loss of Fe-Si-B-Nb-Cu-based powder cores was reduced by the addition of Ca element, and the initial permeability increased due to the addition of Al element.

Keywords

References

  1. P. Duwez, Asm Trans Quart. 60, 605 (1967).
  2. M. Mitera, M. Naka, T. Masumoto, N. Kazama, and K. Watanabe, Phys. Status Solidi A 49, K163 (1978). https://doi.org/10.1002/pssa.2210490262
  3. F. Luborsky, J. Becker, J. L. Walter, and H. H. Liebermann, IEEE Trans. Magn. 15, 1146 (1979). https://doi.org/10.1109/TMAG.1979.1145870
  4. A. Inoue, T. Masumoto, M. Kikuchi, and T. Minemura, Sci. Rep. Res. Inst. Tohoku Univ., A 27, 127 (1979).
  5. M. Mitera, T. Masumoto, and N. Kazama, J. Appl. Phys. 50, 7609 (1979). https://doi.org/10.1063/1.326860
  6. M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater Sci. 44, 291 (1999). https://doi.org/10.1016/S0079-6425(99)00002-X
  7. R. Hasegawa, J. Non-Cryst. Solids 287, 405 (2001). https://doi.org/10.1016/S0022-3093(01)00633-0
  8. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988). https://doi.org/10.1063/1.342149
  9. Y. Yoshizawa and K. Yamauchi, Mater. Trans., JIM 31, 307 (1990). https://doi.org/10.2320/matertrans1989.31.307
  10. Y. Yoshizawa and K. Yamauchi, IEEE Trans. Magn. 25, 3324 (1989). https://doi.org/10.1109/20.42291
  11. K. Suzuki, N. Kataoka, A. Inoue, A. Makino, and T. Masumoto, Mater. Trans., JIM 31, 743 (1990). https://doi.org/10.2320/matertrans1989.31.743
  12. Y. Fujii, H. Fujita, A. Seki, and T. Tomida, J. Appl. Phys. 70, 6241 (1991). https://doi.org/10.1063/1.350008
  13. K. Suzuki, A. Makino, A. Inoue, and T. Masumoto, Sci. Rep. Res. Inst. Tohoku Univ., A 39, 133 (1994).
  14. A. Makino, A. Inoue, and T. Masumoto, Mater. Trans., JIM 36, 924 (1995). https://doi.org/10.2320/matertrans1989.36.924
  15. A. Makino, T. Hatanai, Y. Naitoh, T. Bitoh, A. Inoue, and T. Masumoto, IEEE Trans. Magn. 33, 3793 (1997). https://doi.org/10.1109/20.619574
  16. G. Herzer, Acta Mater. 61, 718 (2013). https://doi.org/10.1016/j.actamat.2012.10.040
  17. G. Herzer, Mater. Sci. Eng., A 133, 1 (1991). https://doi.org/10.1016/0921-5093(91)90003-6
  18. S. Flohrer, R. Schafer, and G. Herzer, J. Non-Cryst. Solids 354, 5097 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.07.034
  19. G. Herzer, S. Flohrer, and C. Polak, IEEE Trans. Magn. 46, 341 (2010). https://doi.org/10.1109/TMAG.2009.2031975
  20. K. Hono, A. Inoue, and T. Sakurai, Appl. Phys. Lett. 58, 2180 (1991). https://doi.org/10.1063/1.104968
  21. G. Herzer, Handbook of Magnetic Materials 10, 415 (1997). https://doi.org/10.1016/S1567-2719(97)10007-5
  22. K. Hono, D. Ping, M. Ohnuma, and H. Onodera, Acta Mater. 47, 997 (1999). https://doi.org/10.1016/S1359-6454(98)00392-9
  23. G. Herzer, V. Budinsky, and C. Polak, Phys. Status Solidi B 248, 2382 (2011). https://doi.org/10.1002/pssb.201147088
  24. S. E. Lyshevski and K. S. Martirosyan: Proc. 11th IEEE Int. Conf. Nanotechnol. (IEEE'11) 1252 (2011).
  25. J. Park and M. Allen, J. Micromech. Microeng. 8, 307 (1998). https://doi.org/10.1088/0960-1317/8/4/008
  26. A. Kordecki and B. Weglinski, Powder Metall. 33, 151 (1990). https://doi.org/10.1179/pom.1990.33.2.151
  27. A. Jack, Conf. Electrical Machines (ICEM'98), 1441 (1998).
  28. T. Lipo, S. Madani, R. White, and W. Ouyang, 11th Int. Power Electronics and Motion Control Conf. (EPEPEMC 2004) (2004).
  29. M. Persson, P. Jansson, A. Jack, and B. Mecrow, Hoganeas Iron Powder Information (PM95-4), 8 (1995).
  30. G. Herzer, J. Magn. Magn. Mater. 157, 133 (1996).
  31. S. K. Nam, S. G. Moon, K. Y. Sohn, and W. W. Park, J. Magn. 19, 327 (2014). https://doi.org/10.4283/JMAG.2014.19.4.327
  32. M. R. Kim, S. I. Kim, K. S. Kim, K. Y. Sohn, and W. W. Park, Met. Mater. Int. 18, 185 (2012). https://doi.org/10.1007/s12540-012-0024-z
  33. Y. Yoshizawa and K. Yamauchi, Mater. Sci. Eng., A 133, 176 (1991). https://doi.org/10.1016/0921-5093(91)90043-M
  34. B. Tate, B. Parmar, I. Todd, H. Davies, M. Gibbs, and R. Major, J. Appl. Phys. 83, 6335 (1998). https://doi.org/10.1063/1.367836
  35. S. Lim, W. Pi, T. Noh, H. Kim, and I. Kang, J. Appl. Phys. 73, 6591 (1993). https://doi.org/10.1063/1.352574
  36. A. Zorkovska, J. Kovac, P. Sovak, P. Petrovic, and M. Konc, J. Magn. Magn. Mater. 215, 492 (2000).
  37. P. Warren, I. Todd, H. Davies, A. Cerezo, M. Gibbs, D. Kendall, and R. Major, Scr. Mater. 41, 1223 (1999). https://doi.org/10.1016/S1359-6462(99)00279-1
  38. A. Inoue, A. Kitamura, and T. Masumoto, J. Mater. Sci. 16, 1895 (1981) https://doi.org/10.1007/BF00540638
  39. G. Herzer, IEEE Trans. Magn. 25, 3327 (1989). https://doi.org/10.1109/20.42292