• Title/Summary/Keyword: Nano Scale

Search Result 1,063, Processing Time 0.029 seconds

Nonlocal elasticity effects on free vibration properties of sigmoid functionally graded material nano-scale plates (S형상 점진기능재료 나노-스케일 판의 자유진동 특성에 미치는 비국소 탄성 효과)

  • Kim, Woo-Jung;Lee, Won-Hong;Park, Weon-Tae;Han, Sung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1109-1117
    • /
    • 2014
  • We study free vibration analysis of sigmoid functionally graded materials(S-FGM) nano-scale plates, using a nonlocal elasticity theory of Eringen in this paper. This theory has ability to capture the both small scale effects and sigmoid function in terms of the volume fraction of the constituents for material properties through the plate thickness. Numerical solutions of S-FGM nano-scale plate are presented using this theory to illustrate the effect of nonlocal theory on natural frequency of the S-FGM nano-scale plates. The relations between nonlocal and local theories are discussed by numerical results. Further, effects of (i) power law index (ii) nonlocal parameters, (iii) elastic modulus ratio and (iv) thickness and aspect ratios on nondimensional frequencies are investigated. In order to validate the present solutions, the reference solutions are compared and discussed. The results of S-FGM nano-scale plates using the nonlocal theory may be the benchmark test for the free vibration analysis.

Effective mechanical properties of micro/nano-scale porous materials considering surface effects

  • Jeong, Joonho;Cho, Maenghyo;Choi, Jinbok
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.107-122
    • /
    • 2011
  • Mechanical behavior in nano-sized structures differs from those in macro sized structures due to surface effect. As the ratio of surface to volume increases, surface effect is not negligible and causes size-dependent mechanical behavior. In order to identify this size effect, atomistic simulations are required; however, it has many limitations because too much computational resource and time are needed. To overcome the restrictions of the atomistic simulations and graft the well-established continuum theories, the continuum model considering surface effect, which is based on the bridging technique between atomistic and continuum simulations, is introduced. Because it reflects the size effect, it is possible to carry out a variety of analysis which is intractable in the atomistic simulations. As a part of the application examples, the homogenization method is applied to micro/nano thin films with porosity and the homogenized elastic coefficients of the nano scale thickness porous films are computed in this paper.

The Properties of DSC and DMA for Epoxy Nano-and-Micro Mixture Composites

  • Lee, Chang-Hoon;Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.69-72
    • /
    • 2010
  • This study investigates the thermal and mechanical properties of insulation elements through the mixing of epoxy based micro and nano particles. Regarding their thermal properties, differential scanning calorimeter and dynamic mechanical analyser were used to calculate the cross-linking densities for various types of insulation elements. The mechanical properties of the bending strength, the shape and scale parameters, were obtained using the Weibull plot. This study obtained the best results in the scale parameters, at 0.5 phr, for the bending strength of the epoxy nano-and-micro mixture composites.

Nano-scale Ink Particles for Electrophoretic Display with High Optical Density

  • Choi, Yong-Gir;Cho, Young-Tae;Park, Seung-Chul;Lee, Yong-Eui;Kim, Chul-Hwan;An, Chee-Hong;Kim, Hyoung-Sub
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.865-867
    • /
    • 2009
  • In this paper, we describe the fabrication of nano-scale ink particles with narrow size distribution to offer high optical density in electrophoretic display applications. Charged white ($TiO_2$ and polyester) and black (carbon black and polyester) nano size ink particles in size range of 200 ~ 700nm were made successively using modified non-aqueous base emulsion process. The EPD showed white reflectance of 58% and saturation voltage of ${\pm}10V$.

  • PDF

Fabrication of a Bottom Electrode for a Nano-scale Beam Resonator Using Backside Exposure with a Self-aligned Metal Mask

  • Lee, Yong-Seok;Jang, Yun-Ho;Bang, Yong-Seung;Kim, Jung-Mu;Kim, Jong-Man;Kim, Yong-Kweon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.546-551
    • /
    • 2009
  • In this paper, we describe a self-aligned fabrication method for a nano-patterned bottom electrode using flood exposure from the backside. Misalignments between layers could cause the final devices to fail after the fabrication of the nano-scale bottom electrodes. A self-alignment was exploited to embed the bottom electrode inside the glass substrate. Aluminum patterns act as a dry etching mask to fabricate glass trenches as well as a self-aligned photomask during the flood exposure from the backside. The patterned photoresist (PR) has a negative sidewall slope using the flood exposure. The sidewall slopes of the glass trench and the patterned PR were $54.00^{\circ}$ and $63.47^{\circ}$, respectively. The negative sidewall enables an embedment of a gold layer inside $0.7{\mu}m$ wide glass trenches. Gold residues on the trench edges were removed by the additional flood exposure with wet etching. The sidewall slopes of the patterned PR are related to the slopes of the glass trenches. Nano-scale bottom electrodes inside the glass trenches will be used in beam resonators operating at high resonant frequencies.

Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity

  • Noroozi, Reza;Barati, Abbas;Kazemi, Amin;Norouzi, Saeed;Hadi, Amin
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • In this paper, for the first time based on the nonlocal strain gradient theory the effect of size dependency in torsional vibration of bi-direction functionally graded (FG) nonlinear nano-cone is study. The material properties were assumed to vary according to the arbitrary function in radial and axial directions. The Navier equation and boundary conditions of the size-dependent bidirectional FG nonlinear nano-cone were derived by Hamilton's principle. These equations were solved by employing the generalized differential quadrature method (GDQM). The presented model can turn into the classical model if the material length scale parameters are taken to be zero. The effects of some parameters, such as inhomogeneity constant, cross-sectional area parameter and small-scale parameters, were studied. As an essential result of this study can be stated that an FG nano-cone model based on the nonlocal elasticity theory behaves softer and based on the strain gradient theory behaves harder.

Study of Ni-germano Silicide Thermal Stability for Nano-scale CMOS Technology (Nano-scale CMOS를 위한 Ni-germano Silicide의 열 안정성 연구)

  • Huang, Bin-Feng;Oh, Soon-Young;Yun, Jang-Gn;Kim, Yong-Jin;Ji, Hee-Hwan;Kim, Yong-Goo;Wang, Jin-Suk;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1149-1155
    • /
    • 2004
  • In this paper, novel methods for improvement of thermal stability of Ni-germano Silicide were proposed for nano CMOS applications. It was shown that there happened agglomeration and abnormal oxidation in case of Ni-germano Silicide using Ni only structure. Therefore, 4 kinds of tri-layer structure, such as, Ti/Ni/TiN, Ni/Ti/TiN, Co/Ni/TiN and Ni/Co/TiN were proposed utilizing Co and Ti interlayer to improve thermal stability of Ni-germano Silicide. Ti/Ni/TiN structure showed the best improvement of thermal stability and suppression of abnormal oxidation although all kinds of structures showed improvement of sheet resistance. That is, Ti/Ni/TiN structure showed only 11 ohm/sq. in spite of 600 $^{\circ}C$, 30 min post silicidation annealing while Ni-only structure show 42 ohm/sq. Therefore, Ti/Ni/TiN structure is highly promising for nano-scale CMOS technology.

Dependency of the Device Characteristics on Plasma Nitrided Oxide for Nano-scale PMOSFET (Nano-scale PMOSFET에서 Plasma Nitrided Oixde에 대한 소자 특성의 의존성)

  • Han, In-Shik;Ji, Hee-Hwan;Goo, Tae-Gyu;You, Ook-Sang;Choi, Won-Ho;Park, Sung-Hyung;Lee, Heui-Seung;Kang, Young-Seok;Kim, Dae-Byung;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.569-574
    • /
    • 2007
  • In this paper, the reliability (NBTI degradation: ${\Delta}V_{th}$) and device characteristic of nano-scale PMOSFET with plasma nitrided oxide (PNO) is characterized in depth by comparing those with thermally nitrided oxide (TNO). PNO case shows the reduction of gate leakage current and interface state density compared to TNO with no change of the $I_{D.sat}\;vs.\;I_{OFF}$ characteristics. Gate oxide capacitance (Cox) of PNO is larger than TNO and it increases as the N concentration increases in PNO. PNO also shows the improvement of NBTI characteristics because the nitrogen peak layer is located near the $Poly/SiO_2$ interface. However, if the nitrogen concentration in PNO oxide increases, threshold voltage degradation $({\Delta}V_{th})$ becomes more degraded by NBT stress due to the enhanced generation of the fixed oxide charges.