• 제목/요약/키워드: Nano Patterns

검색결과 439건 처리시간 0.027초

Removal of Heavy Metals from Wastewater using α-Fe2O3 Nanocrystals

  • Tsedenbal, Bulgan;Lee, Ji Eun;Huh, Seok Hwan;Koo, Bon Heun;Lee, Chan Gyu
    • 한국재료학회지
    • /
    • 제30권9호
    • /
    • pp.447-452
    • /
    • 2020
  • In this work, α-Fe2O3 nanocrystals are synthesized by co-precipitation method and used as adsorbent to remove Cr6+, Cd2+, and Pb2+ from wastewater at room temperature. The prepared sample is evaluated by XRD, BET surface area, and FESEM for structural and morphological characteristics. XRD patterns confirm the formation of a pure hematite structure of average particle size of ~ 40 nm, which is further supported by the FESEM images of the nanocrystals. The nanocrystals are found to have BET specific surface area of ~ 39.18 m2 g-1. Adsorption experiments are carried out for the different values of pH of the solutions, contact time, and initial concentration of metal ions. High efficiency Cr6+, Cd2+, and Pb2+ removal occur at pH 3, 7, and 5.5, respectively. Equilibrium study reveals that the heavy metal ion adsorption of the α-Fe2O3 nanocrystals followed Langmuir and Freundlich isotherm models. The Cr6+, Cd2+, and Pb2+ adsorption equilibrium data are best fitted to the Langmuir model. The maximum adsorption capacities of α-Fe2O3 nanocrystals related to Cr6+, Cd2+, and Pb2+ are found to be 15.15, 11.63, and 20 mg g-1, respectively. These results clearly suggest that the synthesized α-Fe2O3 nanocrystals can be considered as potential nano-adsorbents for future environmental and health related applications.

무기고분자의 나노임프린트법에 의한 세라믹 선형 패턴의 제조 (Fabrication of Ceramic Line Pattern by UV-Nanoimprint Lithography of Inorganic Polymers)

  • 박준홍;팜안뚜앙;이재종;김동표
    • 폴리머
    • /
    • 제30권5호
    • /
    • pp.407-411
    • /
    • 2006
  • 액상의 고분자 전구체 polyvinylsilazane (PVS) 혹은 allylhydridopolycarbosilane(AHPCS)를 실리콘 기판 위에 스핀 코팅한 다음, DVD 마스터로부터 제조된 polydimethylsiloxane(PDMS) 몰드를 이용한 자외선 나노임프린트법으로 나노 크기의 고분자 패턴을 제조하였다. 나아가 질소 분위기하에서 $800^{\circ}C$ 열처리함으로써 각각 SiCN, SiC 세라믹 패턴도 제조하였다. 가교된 고분자와 세라믹 패턴의 폭과 넓이를 원자힘현미경(AFM)과 주사전자현미경(SEM)으로 관측한 결과 PVS와 AHPCS의 패턴 높이는 각각 38.5%와 24.1%, 패턴 폭은 18.8%와 16.7%의 수축률을 나타내었다. 즉 전구체의 세라믹 수율이 높을수록 세라믹 패턴 수축률은 낮아졌고, 패턴과 기판과의 접착에 의한 수축억제로 이방성 수축현상도 관찰되었다. 본 연구결과는 새로운 세라믹 MEMS 소자제작공정으로서 나노임프린트법의 가능성과 수축률 제어 연구가 필요함을 제시하고 있다.

RF Magnetron Sputtering에 의한 BiFeO3 박막의 제조 및 전기적 특성 (Preparation and Electrical Properties of BiFeO3 Films by RF Magnetron Sputtering)

  • 박상식
    • 한국재료학회지
    • /
    • 제19권5호
    • /
    • pp.253-258
    • /
    • 2009
  • Mn-substituted $BiFeO_3$(BFO) thin films were prepared by r.f. magnetron sputtering under an Ar/$O_2$ mixture of various deposition pressures at room temperature. The effects of the deposition pressure and annealing temperature on the crystallization and electrical properties of BFO films were investigated. X-ray diffraction patterns revealed that BFO films were crystallized for films annealed above $500^{\circ}C$. BFO films annealed at $550^{\circ}C$ for 5 min in $N_2$ atmosphere exhibited the crystallized perovskite phase. The (Fe+Mn)/Bi ratio decreased with an increase in the deposition pressure due to the difference of sputtering yield. The grain size and surface roughness of films increased with an increase in the deposition pressure. The dielectric constant of BFO films prepared at various conditions shows $127{\sim}187$ at 1 kHz. The leakage current density of BFO films annealed at $500^{\circ}C$ was approximately two orders of magnitude lower than that of $550^{\circ}C$. The leakage current density of the BFO films deposited at $10{\sim}30\;m$ Torr was about $5{\times}10^{-6}{\sim}3{\times}10^{-2}A/cm^2$ at 100 kV/cm. Due to the high leakage current, saturated P-E curves were not obtained in BFO films. BFO film annealed at $500^{\circ}C$ exhibited remnant polarization(2Pr) of $26.4{\mu}C/cm^2$ at 470 kV/cm.

$Eu^{3+}$ 농도에 따른 $Y_3Al_5O_{12}:Ce^{3+},Eu^{3+}$ 형광체의 광학적 특성 (Photoluminescence Characteristics of $Y_3Al_5O_{12}:Ce^{3+},Eu^{3+}$ Phosphors by $Eu^{3+}$ ions)

  • 곽현호;김세준;박용서;최형욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.441-442
    • /
    • 2008
  • For this study, Yttrium aluminum garnet (YAG) particles co-doped with $Ce^{3+}$ and $Eu^{3+}$ were prepared via the combustion process using the 1:1 ratio of metal ions to reagents. The characteristics of the synthesized nano powder were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and photoluminescence (PL). The various YAG peaks, with the (420) main peak, appeared at all Eu concentrationin XRD patterns. The YAG phase crystallized with results that are in good agreement with the JCPDS diffraction file 33-0040. The SEM image showed that the resulting YAG:Ce,Eu powders had uniform sizes and good homogeneity. The grain size was about 50nm. The photoluminescence spectra of the YAG:Ce,Eu nanoparticles were investigated to determine the energy level of electron transition related to luminescence processes. It was composed a broad band of $Ce^{3+}$ activator into the weak line peak of $Eu^{3+}$ in YAG host. The PL intensity of $Ce^{3+}$ has the wavelengths of 480-650 nm and The PL intensity of $Eu^{3+}$ has main peak at 590nm.

  • PDF

마이크로 컨텍 프린팅 기법을 이용한 결정질 실리콘 태양전지의 전면 텍스쳐링 (Front-side Texturing of Crystalline Silicon Solar Cell by Micro-contact Printing)

  • 홍지화;한윤수
    • 한국전기전자재료학회논문지
    • /
    • 제26권11호
    • /
    • pp.841-845
    • /
    • 2013
  • We give a textured front on silicon wafer for high-efficiency solar cells by using micro contact printing method which uses PDMS (polydimethylsiloxane) silicon rubber as a stamp and SAM (self assembled monolayer)s as an ink. A random pyramidal texturing have been widely used for a front-surface texturing in low cost manufacturing line although the cell with random pyramids on front surface shows relatively low efficiency than the cell with inverted pyramids patterned by normal optical lithography. In the past two decades, the micro contact printing has been intensively studied in nano technology field for high resolution patterns on silicon wafer. However, this promising printing technique has surprisingly never applied so far to silicon based solar cell industry despite their simplicity of process and attractive aspects in terms of cost competitiveness. We employ a MHA (16-mercaptohexadecanoic acid) as an ink for Au deposited $SiO_2/Si$ substrate. The $SiO_2$ pattern which is same as the pattern printed by SAM ink on Au surface and later acts as a hard resist for anisotropic silicon etching was made by HF solution, and then inverted pyramidal pattern is formed after anisotropic wet etching. We compare three textured surface with different morphology (random texture, random pyramids and inverted pyramids) and then different geometry of inverted pyramid arrays in terms of reflectivity.

Photoluminescence of ZnGa2O4-xMx:Mn2+ (M=S, Se) Thin Films

  • Yi, Soung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권6호
    • /
    • pp.13-16
    • /
    • 2003
  • Mn-doped $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film phosphors have been grown using a pulsed laser deposition technique under various growth conditions. The structural characterization carr~ed out on a series of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) films grown on MgO(l00) substrates usmg Zn-rich ceramic targets. Oxygen pressure was varied from 50 to 200 mTorr and Zn/Ga ratio was the function of oxygen pressure. XRD patterns showed that the lattice constants of the $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film decrease with the substitution of sulfur and selenium for the oxygen in the $ZnGa_2O_4$. Measurements of photoluminescence (PL) properties of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin films have indicated that MgO(100) is one of the most promised substrates for the growth of high quality $ZnGa_2O_{4-x}M_{x}$:$Mn^{2+}$ (M=S, Se) thin films. In particular, the incorporation of Sulfur or Selenium into $ZnGa_2O_4$ lattice could induce a remarkable increase in the intensity of PL. The increasing of green emission intensity was observed with $ZnGa_2O_{3.925}Se_{0.075}:$Mn^{2+}$ and $ZnGa_2O_{3.925}S_{0.05}$:$Mn^{2+}$ films, whose brightness was increased by a factor of 3.1 and 1.4 in comparison with that of $ZnGa_{2}O_{4}$:$Mn^{2+}$ films, respectively. These phosphors may promise for application to the flat panel displays.

다공성 3차원 Ti 지지체의 제조 및 알카리처리에 따른 생체활성 평가 (Fabrication of Porous 3-Dimensional Ti Scaffold and Its Bioactivity by Alkali Treatment)

  • 안상현;김승언;김교한;윤희숙;현용택
    • 한국재료학회지
    • /
    • 제19권7호
    • /
    • pp.362-368
    • /
    • 2009
  • Ti scaffolds with a three-dimensional porous structure were successfully fabricated using powder metallurgy and modified rapid prototyping (RP) process. The fabricated Ti scaffolds showed a highly porous structure with interconnected pores. The porosity and pore size of the scaffolds were in the range of 66$\sim$72% and $300\sim400\;\mu$m, respectively. The sintering of the fabricated scaffolds under the vacuum caused the Ti particles to bond to each other. The strength of the scaffolds depended on the layering patterns. The compressive strength of the scaffolds ranged from 15 MPa to 52 MPa according to the scaffolds' architecture. The alkali treatment of the fabricated scaffolds in an aqueous NaOH solution was shown to be effective in improving the bioactivity. The surface of the alkali-treated Ti scaffolds had a nano-sized fibre-like structure. The modified surface showed a good apatite forming ability. The apatite was formed on the surface of the alkali treated Ti scaffolds within 1 day. The thickness of the apatite increased when the soaking time in a simulated body fluid (SBF) solution increased. It is expected that the surface modification of Ti scaffolds by alkali treatment could be effective in forming apatites in vivo and can subsequently enhance bone formation.

Synthesis and M$\ddot{o}$ssabuer Spectroscopy Studies of $Nd_{1-x}Bi_xY_2Fe_5O_{12}$ Nano-Particles

  • Uhm, Young Rang;Lee, Jae-Gwang;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • 제5권1호
    • /
    • pp.16-18
    • /
    • 2000
  • The garnets $Nd_{1-x}Bi_xY_2Fe_5O_{12}$ ($\chi$=0.0, 0.25, 0.5, 0.75 and 1.0) have been studied by x-rays, electron microscopy, ferromagnetic resonance, vibrating sample magnetometer and Mossbauer spectroscopy, Ultra-fine polycrystalline cubic samples have been prepared by a melt-salt routed sol-gel method. The Mossbauer spectra consist of two sets of six-line patterns corresponding to $Fe^{3+}$ at the tetrahedral 24(d) and octahedral 16(a) sites. Magnetic hyperfine fields of $Nd_{0.5}Bi_{0.5}Y_2Fe_5O_{12}$ at 12 K are found to be 548 kOe (octahedral site) and 475 kOe (tetrahedral site), respectively, It is found that Debye temperatures for the tetrahedral and octahedral sites of $Nd_{0.75}Bi_{0.25}Y_2Fe_5O_{12}$ are $\theta_{tet}=436$ K and $\theta_{oct}=285$ K, respectively, The iron ions at both sites are highly covalent ferric. The Nel temperature decreases linearly with Bi concentration, from 630 K fur $\chi$=0.0 to 600 K for $\chi$=1.0, suggesting that the superexchange interaction for the Nd-O-Fe link is stronger than that for the Bi-O-Fe link. As a consequence, the coercivity of $Nd_{1-x}Bi_xY_2Fe_5O_{12}$ drastically decreases and the magnetization remains almost constant as x increases.

  • PDF

나노리소그라피 기술을 이용한 초소수성 불소 실란 분자의 나노패턴 제조 (Fabrication of Superhydrophobic molecules Nanoarray by Dip-pen Nanolithography)

  • 연경흠;강필선;김경민;임정혁
    • 접착 및 계면
    • /
    • 제19권4호
    • /
    • pp.163-166
    • /
    • 2018
  • 이 딥펜 나노리소그라피(DPN)는 원자 힘 현미경(AFM)을 기반으로 하는 나노 및 마이크로 패턴 제조 기술이다. 다양한 잉크 물질을 AFM 탐침에 코팅하여 탐침과 기판 사이에 형성된 물 메니스커스를 통해 기판으로 전이시켜 패턴을 제조한다. 본 연구에서는, 실란 전처리된 AFM 탐침 표면에 불소 실란 잉크 용액을 코팅하고 하이드록시기로 개질된 실리콘 기판 위에 접촉시킨 후, DPN 기술을 이용하여 표면으로 잉크 물질을 전이시키는 연구를 진행하였다. HDFDTMS 잉크 물질의 dot 어레이 패턴을 안정적으로 제조하였으며, AFM 탐침과 기판 사이의 접촉시간에 따라 패턴 크기가 선형적으로 증가하는 전형적인 DPN의 확산 메커니즘을 보였다.

스핀코팅 하드마스크용 유-무기 하이브리드 소재에 관한 연구 (Organic-inorganic Hybrid Materials for Spin Coating Hardmask)

  • 유제정;황석호;김상범
    • 공업화학
    • /
    • 제22권2호
    • /
    • pp.230-234
    • /
    • 2011
  • 반도체산업은 고집적화된 회로를 요구하면서 미세 패턴을 형성하기 위해 계속해서 발전해가고 있다. 이에 반도체 산업에서 미세 패턴을 형성하기 위하여 하드마스크를 도입하여 사용되고 있다. 일반적으로 하드마스크는 화학증기증착법(CVD) 공정을 이용하여 다층구조로 제작된다. 이에 본 연구에서는 스핀공정이 가능하고 단층의 하드마스크용 조성물을 제조하기 위하여 유-무기 하이브리드 중합체를 이용하여 그 특성에 대하여 연구하였다. Silanol로 처리된 siloxane 화합물과 acetonide 그룹을 가지는 propionic acid를 에스터화 반응을 통하여 얻은 유-무기 하이브리드 중합체에 가교제 및 첨가제들의 첨가로 광학적, 열적, 그리고 표면 특성이 조절된 하드마스크 막을 제조하였다. 또한 하드마스크 막과 감광층의 식각비를 비교하여 유-무기 소재의 하이브리드 중합체에 대해 미세패턴을 형성시킬 수 있는 하드마스크 막으로써의 유용성을 확인하였다.