Browse > Article
http://dx.doi.org/10.17702/jai.2018.19.4.163

Fabrication of Superhydrophobic molecules Nanoarray by Dip-pen Nanolithography  

Yeon, Kyung-Heum (Department Department of Polymer Science and Engineering, Korea National University of Transportation)
Kang, Pil-Seon (Department Department of Polymer Science and Engineering, Korea National University of Transportation)
Kim, Kyung-Min (Department Department of Polymer Science and Engineering, Korea National University of Transportation)
Lim, Jun-Hyurk (Department Department of Polymer Science and Engineering, Korea National University of Transportation)
Publication Information
Journal of Adhesion and Interface / v.19, no.4, 2018 , pp. 163-166 More about this Journal
Abstract
Dip-pen nanolithography(DPN) is an atomic force microscope (AFM) based method of generating nano- or micro-patterns. This technique has been used to transfer various ink materials on the substrate through water meniscus formed between AFM tip and the substrate surface. In this study, the heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane (HDFDTMS) ink materials were coated on the pre-coated AFM tip surface with the HDFDTMS molecules. When the tip brought into contact with the hydroxyl-functionalized silicon surface, HDFDTMS ink molecules have been successfully transported from the tip onto the surface via water meniscus. The created array and passivation area showed stable structures on the surface, and the transport of ink materials from the AFM tip to the surface followed linear increase in pattern size with contact time.
Keywords
Atomic force microscopy; Dip-pen nanolithography; Silane coupling; Array pattern;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin, Science, 283, 661, (1999).   DOI
2 L. Fu, X. Liu, Y. Zhang, V. P. Dravid, C. A. Mirkin, Nano Lett., 3, 757, (2003).   DOI
3 J. Jang, S. Hong, G. C. Schatz, M. A. Ratner, J. Chem. Phys., 115, 2721, (2001).   DOI
4 H. G. Jung, C. K. Dalal, S. Kuntz, R. Shah, C. P. Collier, Nano Lett., 4, 2171, (2004).   DOI
5 J. H. Lim, D. S. Ginger, K. B. Lee, J. S. Heo, J.M. Nam, C. A. Mirkin, Angew. Chem. Int. Ed., 42, 2309, (2003).   DOI
6 D. S. Choi, S. H. Yun, Y. C. An, M. J. Lee, D. G. Kang, S. I. Chang, H. K. Kim, K. M. Kim, J. H. Lim, Biochip Journal, 1, 200, (2007).
7 Y. H. Shin, S. H. Yun, S. H. Pyo, Y. S. Lim, H. J. Yoon, K. H. Kim, S. K. Moon, S. W. Lee, Y. G. Park, S. I. Chang, K. M. Kim, J. H. Lim, Angew. Chem., 122, 9883, (2010).   DOI
8 E. J. Peterson, B. L. Weeks, J. J. De Yoreo, P. V. Schwartz, J. Phys. Chem., 108, 15206, (2004).   DOI
9 M. Hirtz, A. Oikonomou, T. Georgiou, H. Fuchs, A. Vijayaraghavan, Nature Communications, 4, 2591 (2013)   DOI
10 W. M. Wang, R. M. Stoltenberg, S. Liu, Z. Bao, ACS Nano., 2, 2135, (2008).   DOI
11 J. E. Kim, Y. H. Shin, S. H. Yun, D. S. Choi, J. H. Nam, S. R. Kim, S. K. Moon, B. H. Chung, J. H. Lee, J. H. Kim, K. Y. Kim, K. M. Kim, J. H. Lim, J. Am. Chem. Soc., 134, 16500, (2012).   DOI
12 C. C. Wu, H. Xu, C. Otto, D. N. Reinhoudt, R. G. H. Lammertink, J. Huskens, V. Subramaniam, A. H. Velders, J. Am. Chem. Soc., 131, 7526, (2009)   DOI
13 K. Salaita, Y. H. Wang, C. A. Mirkin, Nature Nanotechnology, 2, 145, (2007).   DOI
14 Y. J. Ji, Y. J. Shin. Y. R. Shin, J. Y. Kim, Y. S. Yoon, J. S. Shin, Journal of Adhesion and Interface, 7, 10, (2006).
15 J. A. Howarter, J. P. Youngblood, Macromolecules, 40, 1128, (2007).   DOI
16 B. Bhushan, D. Hansford, K. K. Lee, J. Vac. Sci. Technol., 24, 1197, (2006)
17 Y. Wang, B. Bhushan, ACS Appl. Mater. Interfaces, 7, 743, (2015).   DOI
18 A. Ivanisevic, C. A. Mirkin, J. Am. Chem. Soc., 123, 7887, (2001).   DOI
19 A. Hernandez-Santana, E. Irvine, K. Faulds, D. Graham, Chem. Sci., 2, 211, (2011)   DOI