DOI QR코드

DOI QR Code

Fabrication of Porous 3-Dimensional Ti Scaffold and Its Bioactivity by Alkali Treatment

다공성 3차원 Ti 지지체의 제조 및 알카리처리에 따른 생체활성 평가

  • 안상현 (한국기계연구원 부설 재료연구소) ;
  • 김승언 (한국기계연구원 부설 재료연구소) ;
  • 김교한 (경북대학교 치과대학 치과재료학교실) ;
  • 윤희숙 (한국기계연구원 부설 재료연구소) ;
  • 현용택 (한국기계연구원 부설 재료연구소)
  • Published : 2009.07.27

Abstract

Ti scaffolds with a three-dimensional porous structure were successfully fabricated using powder metallurgy and modified rapid prototyping (RP) process. The fabricated Ti scaffolds showed a highly porous structure with interconnected pores. The porosity and pore size of the scaffolds were in the range of 66$\sim$72% and $300\sim400\;\mu$m, respectively. The sintering of the fabricated scaffolds under the vacuum caused the Ti particles to bond to each other. The strength of the scaffolds depended on the layering patterns. The compressive strength of the scaffolds ranged from 15 MPa to 52 MPa according to the scaffolds' architecture. The alkali treatment of the fabricated scaffolds in an aqueous NaOH solution was shown to be effective in improving the bioactivity. The surface of the alkali-treated Ti scaffolds had a nano-sized fibre-like structure. The modified surface showed a good apatite forming ability. The apatite was formed on the surface of the alkali treated Ti scaffolds within 1 day. The thickness of the apatite increased when the soaking time in a simulated body fluid (SBF) solution increased. It is expected that the surface modification of Ti scaffolds by alkali treatment could be effective in forming apatites in vivo and can subsequently enhance bone formation.

Keywords

References

  1. M. Long and H. J. Rack, Biomaterials, 19, 1621 (1998) https://doi.org/10.1016/S0142-9612(97)00146-4
  2. D. M. Liu, Ceram. Int., 24, 441 (1998) https://doi.org/10.1016/S0272-8842(97)00033-3
  3. J. Zhao, S. Xiao, X. Lu, J. Wang and J. Weng, J. Biomed. Mater., 1, 188 (2006) https://doi.org/10.1088/1748-6041/1/4/002
  4. H. Chliephake, F. Tavassol, M. Gelinsky, M. Dard, A. Sewing and W. Pompe, Clin. Oral Implants Res., 15, 112 (2004) https://doi.org/10.1111/j.1600-0501.2004.00992.x
  5. S. S. Kim, M. S. Park, O. Jeon, C. Y. Choi and B. S. Kim, Biomaterials, 27, 1399 (2006) https://doi.org/10.1016/j.biomaterials.2005.08.016
  6. S. F. Yang, K. F. Leong, Z. H. Du and C. K. Chua, Tissue Eng., 8, 1 (2002) https://doi.org/10.1089/107632702753503009
  7. I. Zein, D. W. Hutmacher, K. C. Tan and S. H. Teoh, Biomaterials, 23, 1169 (2002) https://doi.org/10.1016/S0142-9612(01)00232-0
  8. G. Altankov, F. Grinnell and T. Groth, J. Biomed. Mater., 30, 385 (1996) https://doi.org/10.1002/(SICI)1097-4636(199603)30:3<385::AID-JBM13>3.0.CO;2-J
  9. J. H. Lee, H. B. Lee and J. D. Andrade, Pro. Poly. Sci., 20, 1043 (1995) https://doi.org/10.1016/0079-6700(95)00011-4
  10. T. Kokubo, H. Kushitani, S. Kitsugi and T. Yamamuro, J. Biomed. Mater., 24, 721 (1990) https://doi.org/10.1002/jbm.820240607
  11. H. M. Kim, T. Kokubo, S. Fujibayashi, S. Nishiguchi and T. Nakamura, J Biomed Mater., 52, 553 (2000) https://doi.org/10.1002/1097-4636(20001205)52:3<553::AID-JBM14>3.0.CO;2-X
  12. B. D. Boyan, T. W. Hummert, D. D. Dean and Z. Schwartz, Biomaterials, 17, 137 (1996) https://doi.org/10.1016/0142-9612(96)85758-9
  13. T. Yoshikawa, H. Ohgushi and S. Tamai, J. Biomed. Mater. Res., 32, 481 (1996) https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<481::AID-JBM23>3.0.CO;2-I
  14. D. W. Hutmacher, Biomaterials, 21, 2529 (2000) https://doi.org/10.1016/S0142-9612(00)00121-6
  15. D. Choi, K. G. Marra and P. N. Kumta, Mater. Res. Bullet., 39, 417 (2008) https://doi.org/10.1016/j.materresbull.2003.10.013
  16. E. J. Lee, Y. H. Koh, B. H. Yoon, H. E. Kim and H. W. Kim, Materials Letters, 61, 2270 (2007) https://doi.org/10.1016/j.matlet.2006.08.065
  17. E. T. Den Braber, J. E. De Ruijter, H. T. J. Smits, L. A. Ginsel, A. F. Von Recum and J. A. Jansen, J. Biomed Mater. Res., 29, 511 (1995) https://doi.org/10.1002/jbm.820290411
  18. G. Andrei, H. Tsuchiya, J. M. Macak and P. Schmuki, Electro. Com., 7, 505 (2005) https://doi.org/10.1016/j.elecom.2005.03.007
  19. A. Bagno and C. Di Bello, J. Mater. Sci. Mater. Med., 15, 935 (2004) https://doi.org/10.1023/B:JMSM.0000042679.28493.7f
  20. T. Hanawa, Mater. Sci. Eng., A 267, 260 (1999) https://doi.org/10.1016/S0921-5093(99)00101-X
  21. R. Beranek, H. Hidelbrand, P. Schmuki, Electrochem. Solid-State Lett., 6, B12 (2003) https://doi.org/10.1149/1.1545192
  22. H. Ishizawa and M. Ogino, J. Biomed. Mater. Res., 29, 1071 (1995) https://doi.org/10.1002/jbm.820290907