Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.9.447

Removal of Heavy Metals from Wastewater using α-Fe2O3 Nanocrystals  

Tsedenbal, Bulgan (School of Materials Science and Engineering, Changwon National University)
Lee, Ji Eun (School of Materials Science and Engineering, Changwon National University)
Huh, Seok Hwan (School of Mechatronics Convergence Engineerings, Changwon National University,)
Koo, Bon Heun (School of Materials Science and Engineering, Changwon National University)
Lee, Chan Gyu (School of Materials Science and Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.30, no.9, 2020 , pp. 447-452 More about this Journal
Abstract
In this work, α-Fe2O3 nanocrystals are synthesized by co-precipitation method and used as adsorbent to remove Cr6+, Cd2+, and Pb2+ from wastewater at room temperature. The prepared sample is evaluated by XRD, BET surface area, and FESEM for structural and morphological characteristics. XRD patterns confirm the formation of a pure hematite structure of average particle size of ~ 40 nm, which is further supported by the FESEM images of the nanocrystals. The nanocrystals are found to have BET specific surface area of ~ 39.18 m2 g-1. Adsorption experiments are carried out for the different values of pH of the solutions, contact time, and initial concentration of metal ions. High efficiency Cr6+, Cd2+, and Pb2+ removal occur at pH 3, 7, and 5.5, respectively. Equilibrium study reveals that the heavy metal ion adsorption of the α-Fe2O3 nanocrystals followed Langmuir and Freundlich isotherm models. The Cr6+, Cd2+, and Pb2+ adsorption equilibrium data are best fitted to the Langmuir model. The maximum adsorption capacities of α-Fe2O3 nanocrystals related to Cr6+, Cd2+, and Pb2+ are found to be 15.15, 11.63, and 20 mg g-1, respectively. These results clearly suggest that the synthesized α-Fe2O3 nanocrystals can be considered as potential nano-adsorbents for future environmental and health related applications.
Keywords
${\alpha}-Fe_2O_3$ nanocrystals; heavy metal; adsorption; isotherm model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Bagbi, A. Sarswat, D. Mohan, A. Pandey and P. R. Solanki, Sci. Rep., 7, 1 (2017).   DOI
2 P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J. Zhu and H. He, J. Hazard. Mater., 173, 614 (2010).   DOI
3 M. A. Ahmed, S. M. Ali, S. I. El-Dek and A. Galal, Mater. Sci. Eng., B, 178, 744 (2013).   DOI
4 V. M. Boddu, K. Abburi, J. L. Talbott and E. D. Smith, Environ. Sci. Technol. Lett., 37, 4449 (2003).   DOI
5 J. T. Mayo, C. Yavuz, S. Yean, L. Cong, H. Shiple, W. Yu, J. Falkner, A. Kan, M. Tomson and V. L. Colvin, Sci. Technol. Adv. Mater., 8, 71 (2007).   DOI
6 Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi and A. Montiel, J. Hazard. Mater., 156, 412 (2008).   DOI
7 G. Vijayakumar, R. Tamilarasan and M. Dharmendirakumar, J. Mater. Environ. Sci., 3, 157 (2012).
8 W. Jiang, M. Pelaez, D. D. Dionysiou, M. H. Entezari, D. Tsoutsou and K. O'Shea, Chem. Eng. J., 222, 527 (2013).   DOI
9 H. Karami, Chem. Eng. J., 219, 209 (2013).   DOI
10 X. L. Fang, C. Chen, M. S. Jin, Q. Kuang, Z. X. Xie, S. Y. Xie, R.B. Huang and L. S. Zheng, J. Mater. Chem., 19, 6154 (2009).   DOI
11 S. Rajput, C. U. Pittman Jr and D. Mohan, J. Colloid Interface Sci., 468, 334 (2016).   DOI
12 Y. F. Shen, J. Tang, Z. H. Nie, Y. D. Wang, Y. Ren and L. Zuo, Sep. Purif. Technol., 68, 312 (2009).   DOI
13 A. Roy, J. Bhattacharya, Chem. Eng. J., 211-212, 493 (2012).   DOI
14 X. L. Cheng, J. S. Jiang, C. Y. Jin, C. C. Lin, Y. Zeng and Q. H. Zhang, Chem. Eng. J., 236, 139 (2014).   DOI
15 H. Liang, B. Xu and Z. Wang, Mater. Chem. Phys., 141, 727 (2013).   DOI
16 B. Tsedenbal, M. S. Anwar, I. Hussain and B. H. Koo, J. Nanosci. Nanotechnol., 17, 7682 (2017).
17 S. Mahdavi, M. Jalali and A. Afkhami, J. Nanopart. Res. 14, 846 (2012).   DOI
18 B. E. Reed, M. R. Matsumoto, Sep. Sci. Technol., 28, 2179 (1993).   DOI
19 L. Giraldo, A. Erto and J. C. Moreno-Pirajan, Adsorption, 19, 465 (2013).   DOI
20 D. Fialova, M. Kremplova, L. Melichar, P. Kopel, D. Hynek, V. Adam and R. Kizek, Materials, 7, 2242 (2014).   DOI
21 D. He, Y. Xiao, D. Liang, H. Zhou, L. Du and L. Liu, Mater. Sci. Appl., 2, 215 (2011).   DOI
22 S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang and W. Zhou, J. Phys. Chem. C, 111, 10217 (2007).   DOI
23 K. M. S. Surchi, Int. J. Chem., 3, 103 (2011).
24 F. Rozada, M. Otero, A. Moran and A. I. Garsia, Bioresour. Technol., 99, 6332 (2008).   DOI