• Title/Summary/Keyword: Nano MOSFETs

Search Result 42, Processing Time 0.028 seconds

Hole Mobility Enhancement in (100)- and (110)-surfaces of Ultrathin-Body Silicon-on-Insulator Metal-Oxide-Semiconductors (Ultrathin-Body SOI MOSFETs에서 면방향에 따른 정공의 이동도 증가)

  • Kim, Kwan-Su;Koo, Sang-Mo;Chung, Hong-Bay;Jung, Jong-Wan;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.7-8
    • /
    • 2007
  • We investigated the characteristics of UTB-SOI pMOSFETs with SOI thickness ($T_{SOI}$) ranging from 10 nm to 1 nm and evaluated the dependence of electrical characteristics on the silicon surface orientation. As a result, it is found that the subthreshold characteristics of (100)-surface UTB-SOI pMOSFETs were superior to (110)-surface. However, the hole mobility of (110)-surface were larger than that of (100)-surface. The enhancement of effective hole mobility at the effective field of 0.1 MV/ccm was observed from 3-nm to 5-nm SOI thickness range.

  • PDF

Analysis of Novel Helmholtz-inductively Coupled Plasma Source and Its Application for Nano-Scale MOSFETs

  • Park, Kun-Joo;Kim, Kee-Hyun;Lee, Weon-Mook;Chae, Hee-Yeop;Han, In-Shik;Lee, Hi-Deok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.35-39
    • /
    • 2009
  • A novel Helmholtz coil inductively coupled plasma(H-ICP) etcher is proposed and characterized for deep nano-scale CMOS technology. Various hardware tests are performed while varying key parameters such as distance between the top and bottom coils, the distance between the chamber ceiling and the wafer, and the chamber height in order to determine the optimal design of the chamber and optimal process conditions. The uniformity was significantly improved by applying the optimum conditions. The plasma density obtained with the H-ICP source was about $5{\times}10^{11}/cm^3$, and the electron temperature was about 2-3 eV. The etching selectivity for the poly-silicon gate versus the ultra-thin gate oxide was 482:1 at 10 sccm of $HeO_2$. The proposed H-ICP was successfully applied to form multiple 60-nm poly-silicon gate layers.

Temperature Effect on the Interface Trap in Silicon Nanowire Pseudo-MOSFETs

  • Nam, In-Cheol;Kim, Dae-Won;Heo, Geun;Najam, Syed Faraz;Hwang, Jong-Seung;Hwang, Seong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.487-487
    • /
    • 2013
  • According to shrinkage of transistor, interface traps have been recognized as a major factor which limits the process development in manufacturing industry. The traps occur through spontaneous generation process, and spread into the forbidden band. There is a large change of current though a few traps are existed at the Si-SiO2 interface. Moreover, the increased temperature largely affects to the leakage current due to the interface trap. For this reason, we made an effort to find out the relationship between temperature and interface trap. The subthreshold swing (SS) was investigated to confirm the correlation. The simulated results show that the sphere of influence of trap is enlarged according to increase in temperature. To investigate the relationship between thermal energy and surface potential, we extracted the average surface potential and thermal energy (kT) according to the temperature. Despite an error rate of 6.5%, change rates of both thermal energy and average surface potential resemble each other in many ways. This allows that SS is affected by the trap within the range of the thermal energy from the surface energy.

  • PDF

Integrated Circuit Design Based on Carbon Nanotube Field Effect Transistor

  • Kim, Yong-Bin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.175-188
    • /
    • 2011
  • As complementary metal-oxide semiconductor (CMOS) continues to scale down deeper into the nanoscale, various device non-idealities cause the I-V characteristics to be substantially different from well-tempered metal-oxide semiconductor field-effect transistors (MOSFETs). The last few years witnessed a dramatic increase in nanotechnology research, especially the nanoelectronics. These technologies vary in their maturity. Carbon nanotubes (CNTs) are at the forefront of these new materials because of the unique mechanical and electronic properties. CNTFET is the most promising technology to extend or complement traditional silicon technology due to three reasons: first, the operation principle and the device structure are similar to CMOS devices and it is possible to reuse the established CMOS design infrastructure. Second, it is also possible to reuse CMOS fabrication process. And the most important reason is that CNTFET has the best experimentally demonstrated device current carrying ability to date. This paper discusses and reviewsthe feasibility of the CNTFET's application at this point of time in integrated circuits design by investigating different types of circuit blocks considering the advantages that the CNTFETs offer.

A Nano-power Switched-capacitor Voltage Reference Using MOS Body Effect for Applications in Subthreshold LSI

  • Zhang, Hao;Huang, Meng-Shu;Zhang, Yi-Meng;Yoshihara, Tsutomu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.70-82
    • /
    • 2014
  • A nano-power CMOS voltage reference is proposed in this paper. Through a combination of switched-capacitor technology with the body effect in MOSFETs, the output voltage is defined as the difference between two gate-source voltages using only a single PMOS transistor operated in the subthreshold region, which has low sensitivity to the temperature and supply voltage. A low output, which breaks the threshold restriction, is produced without any subdivision of the components, and flexible trimming capability can be achieved with a composite transistor, such that the chip area is saved. The chip is implemented in $0.18{\mu}m$ standard CMOS technology. Measurements show that the output voltage is approximately 123.3 mV, the temperature coefficient is $17.6ppm/^{\circ}C$, and the line sensitivity is 0.15 %/V. When the supply voltage is 1 V, the supply current is less than 90 nA at room temperature. The area occupation is approximately $0.03mm^2$.

A Study on the Design Method of Hybrid MOSFET-CNTFET based SRAM (하이브리드 MOSFET-CNTFET 기반 SRAM 디자인 방법에 관한 연구)

  • Geunho Cho
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.65-70
    • /
    • 2023
  • More than 10,000 Carbon NanoTube Field Effect Transistors (CNTFETs), which have advantages such as high carrier mobility, large saturation velocity, low intrinsic capacitance, flexibility, and transparency, have been successfully integrated into one semiconductor chip using conventional semiconductor design procedures and manufacturing processes. Three-dimensional multilayer structure of the CNTFET semiconductor chip and various CNTFET manufacturing process research increase the possibility of making the hybrid MOSFET-CNTFET semiconductor chip which combines conventional MOSFETs and CNTFETs together in a semiconductor chip. This paper discusses a methodology to design 6T binary SRAM using hybrid MOSFET-CNTFET. By utilizing the existing MOSFET SRAM or CNTFET SRAM design method, we will introduce a method of designing a hybrid MOSFET-CNTFET SRAM and compare its performance with the conventional MOSFET SRAM and CNTFET SRAM.

Characterization and Comparison of Doping Concentration in Field Ring Area for Commercial Vertical MOSFET on 8" Si Wafer (8인치 Si Power MOSFET Field Ring 영역의 도핑농도 변화에 따른 전기적 특성 비교에 관한 연구)

  • Kim, Gwon Je;Kang, Ye Hwan;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.271-274
    • /
    • 2013
  • Power Metal Oxide Semiconductor Field Effect Transistor's (MOSFETs) are well known for superior switching speed, and they require very little gate drive power because of the insulated gate. In these respects, power MOSFETs approach the characteristics of an "ideal switch". The main drawback is on-resistance RDS(on) and its strong positive temperature coefficient. While this process has been driven by market place competition with operating parameters determined by products, manufacturing technology innovations that have not necessarily followed such a consistent path have enabled it. This treatise briefly examines metal oxide semiconductor (MOS) device characteristics and elucidates important future issues which semiconductor technologists face as they attempt to continue the rate of progress to the identified terminus of the technology shrink path in about 2020. We could find at the electrical property as variation p base dose. Ultimately, its ON state voltage drop was enhanced also shrink chip size. To obtain an optimized parameter and design, we have simulated over 500 V Field ring using 8 Field rings. Field ring width was $3{\mu}m$ and P base dose was $1e15cm^2$. Also the numerical multiple $2.52cm^2$ was obtained which indicates the doping limit of the original device. We have simulated diffusion condition was split from $1,150^{\circ}C$ to $1,200^{\circ}C$. And then $1,150^{\circ}C$ diffusion time was best condition for break down voltage.

DC Characteristic of Silicon-on-Insulator n-MOSFET with SiGe/Si Heterostructure Channel (SiGe/Si 이종접합구조의 채널을 이용한 SOI n-MOSFET의 DC 특성)

  • Choi, A-Ram;Choi, Sang-Sik;Yang, Hyun-Duk;Kim, Sang-Hoon;Lee, Sang-Heung;Shim, Kyu-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.99-100
    • /
    • 2006
  • Silicon-on-insulator(SOI) MOSFET with SiGe/Si heterostructure channel is an attractive device due to its potent use for relaxing several limits of CMOS scaling, as well as because of high electron and hole mobility and low power dissipation operation and compatibility with Si CMOS standard processing. SOI technology is known as a possible solution for the problems of premature drain breakdown, hot carrier effects, and threshold voltage roll-off issues in sub-deca nano-scale devices. For the forthcoming generations, the combination of SiGe heterostructures and SOI can be the optimum structure, so that we have developed SOI n-MOSFETs with SiGe/Si heterostructure channel grown by reduced pressure chemical vapor deposition. The SOI n-MOSFETs with a SiGe/Si heterostructure are presented and their DC characteristics are discussed in terms of device structure and fabrication technology.

  • PDF

SPICE Model of Drain Induced Barrier Lowering in Junctionless Cylindrical Surrounding Gate (JLCSG) MOSFET (무접합 원통형 MOSFET에 대한 드레인 유도 장벽 감소의 SPICE 모델)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.278-282
    • /
    • 2018
  • We propose a SPICE model of drain-induced barrier lowering (DIBL) for a junctionless cylindrical surrounding gate (JLCSG) MOSFETs. To this end, the potential distribution in the channel is obtained via the Poisson equation, and the threshold voltage model is presented for the JLCSG MOSFET. In a JLCSG nano-structured MOSFET, a channel radius affects the carrier transfer as well as the channel length and oxide thickness; therefore, DIBL should be expressed as a function of channel length, channel radius, and oxide thickness. Consequently, it can be seen that DIBLs are proportional to the power of -3 for the channel length, 2 for the channel radius, 1 for the thickness of the oxide film, and the constant of proportionality is 18.5 when the SPICE parameter, the static feedback coefficient ${\eta}$, is between 0.2 and 1.0. In particular, as the channel radius and the oxide film thickness increase, the value of ${\eta}$ remains nearly constant.

A Study About Design and Characteristic Improvement According to P-base Concentration Charge of 500 V Planar Power MOSFET (500 V 급 Planar Power MOSFET의 P 베이스 농도 변화에 따른 설계 및 특성 향상에 관한 연구)

  • Kim, Gwon Je;Kang, Ye Hwan;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.284-288
    • /
    • 2013
  • Power MOSFETs(Metal Oxide Semiconductor Field Effect Transistor) operate as energy control semiconductor switches. In order to reduce energy loss of the device during switch-on state, it is essential to increase its conductance. We have experimental results and explanations on the doping profile dependence of the electrical behavior of the vertical MOSFET. The device is fabricated as $8.25{\mu}m$ cell pitch and $4.25{\mu}m$ gate width. The performances of device with various p base doping concentration are compared at Vth from 1.77 V to 4.13 V. Also the effect of the cell structure on the on-resistance and breakdown voltage of the device are analyzed. The simulation results suggest that the device optimized for various applications can be further optimized at power device.