• 제목/요약/키워드: Nano Deformation Behavior

검색결과 111건 처리시간 0.028초

원자짝 분포 함수를 이용한 플라이애시를 대량 치환한 시멘트 클링커의 나노 구조 변형 거동 해석 (Analysis of Nanostructural Deformation Behavior of Cement Clinker Substituting High-volume Fly ash by Pair Distribution Function)

  • 지현석;박재연;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.112-113
    • /
    • 2019
  • Recently, supplementary cementitious materials such as blast-furnace slag, fly ash and silica fume have been widely used as substitutes for cementitious materials. In this study, the deformation behavior of compressive loading of C3S paste with 50% fly ash was analyzed by X-ray scattering data and pair distribution function analysis. The obtained results were compared with 131-day-old pure C3S paste. The Ca(OH)2 of the C3S-FA paste showed almost complete elastic behavior, consistent with the deformation behavior of the r-range of 20 to 40, and the C-S-H phase contributed to the range of PDF r-range of less than 20. In addition, C-S-H of C3S-FA showed greater deformation resistance than C3S paste.

  • PDF

ECAP 공정을 이용한 분말의 치밀화 (Powder Densification Using Equal Channel Angular Pressing)

  • 윤승채;서민홍;홍순익;김형섭
    • 한국분말재료학회지
    • /
    • 제13권2호
    • /
    • pp.124-128
    • /
    • 2006
  • In recent years, equal channel angular pressing (ECAP) has been the subject of intensive study due to its capability of producing fully dense samples having a ultrafine grain size. In this paper, the ECAP process was applied to metallic powders in order to achieve both powder consolidation and grain refinement. In the ECAP process for solid and powder metals, knowledge of the internal stress, strain and strain rate distribution is fundamental to the determination of the optimum process conditions for a given material. The properties of the ECAP processed solid and powder materials are strongly dependent on the shear plastic deformation behavior during ECAP, which is controlled mainly by die geometry, material properties, and process conditions. In this study, we investigated the consolidation, plastic deformation and microstructure evolution behaviour of the powder compact during ECAP.

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS

  • Altabey, Wael A.
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.337-357
    • /
    • 2017
  • Knowledge of thin films mechanical properties is strongly associated to the reliability and the performances of Nano Electro Mechanical Systems (NEMS). In the literature, there are several methods for micro materials characterization. Bulge test is an established nondestructive technique for studying the mechanical properties of thin films. This study improve the performances of NEMS by investigating the mechanical behavior of Nano rectangular thin film (NRTF) made of new material embedded in Nano Electro Mechanical Systems (NEMS) by developing the bulge test technique. The NRTF built from adhesively-bonded layers of basalt fiber reinforced polymer (BFRP) laminate composite materials in Nano size at room temperature and were used for plane-strain bulging. The NRTF is first pre-stressed to ensure that is no initial deflection before applied the loads on NRTF and then clamped between two plates. A differential pressure is applying to a deformation of the laminated composite NRTF. This makes the plane-strain bulge test idea for studying the mechanical behavior of laminated composite NRTF in both the elastic and plastic regimes. An exact solution of governing equations for symmetric cross-ply BFRP laminated composite NRTF was established with taking in-to account the effect of the residual strength from pre-stressed loading. The stress-strain relationship of the BFRP laminated composite NRTF was determined by hydraulic bulging test. The NRTF thickness gradation in different points of hemisphere formed in bulge test was analysed.

분말 ECAP 공정 시 치밀화의 유한요소해석 (Finite Element Analysis of Densification Behavior during Equal Channel Angular Pressing Process of Powders)

  • 윤승채;팜쾅;천병선;이홍로;김형섭
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.415-420
    • /
    • 2006
  • Nanostructured metallic materials are synthesized by bottom-up processing which starts with powders for assembling bulk materials or top-down processing starting with a bulk solid. A representative bottom-up and top-down paths for bulk nanostructured/ultrafine grained metallic materials are powder consolidation and severe plastic deformation (SPD) methods, respectively. In this study, the bottom-up powder and top-down SPD approaches were combined in order to achieve both full density and grain refinement without grain growth, which were considered as a bottle neck of the bottom-up method using conventional powder metallurgy of compaction and sintering. For the powder consolidation, equal channel angular pressing (ECAP), one of the most promising method in SPD, was used. The ECAP processing associated with stress developments was investigated. ECAP for powder consolidation were numerically analyzed using the finite element method (FEM) in conjunction with pressure and shear stress.

Application of machine learning and deep neural network for wave propagation in lung cancer cell

  • Xing, Lumin;Liu, Wenjian;Li, Xin;Wang, Han;Jiang, Zhiming;Wang, Lingling
    • Advances in nano research
    • /
    • 제13권3호
    • /
    • pp.297-312
    • /
    • 2022
  • Coughing and breath shortness are common symptoms of nano (small) cell lung cancer. Smoking is main factor in causing such cancers. The cancer cells form on the soft tissues of lung. Deformation behavior and wave vibration of lung affected when cancer cells exist. Therefore, in the current work, phase velocity behavior of the small cell lung cancer as a main part of the body via an exact size-dependent theory is presented. Regarding this problem, displacement fields of small cell lung cancer are obtained using first-order shear deformation theory with five parameters. Besides, the size-dependent small cell lung cancer is modeled via nonlocal stress/strain gradient theory (NSGT). An analytical method is applied for solving the governing equations of the small cell lung cancer structure. The novelty of the current study is the consideration of the five-parameter of displacement for curved panel, and porosity as well as NSGT are employed and solved using the analytical method. For more verification, the outcomes of this reports are compared with the predictions of deep neural network (DNN) with adaptive optimization method. A thorough parametric investigation is conducted on the effect of NSGT parameters, porosity and geometry on the phase velocity behavior of the small cell lung cancer structure.

과냉각 액상 구간에서 Cu-based BMG 합금의 결정화와 변형 거동 (Deformation and crystallization of Cu-base BMG alloy in the supercooled liquid region)

  • 박은수;이주호;김휘준;배정찬;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.143-145
    • /
    • 2007
  • The correlation between crystallization and deformation behavior in the supercooled liquid region (SLR) of a $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ bulk metallic glass (BMG) alloy is investigated by compression tests, differential scanning calorimetry (DSC), electron energy loss spectrometry (EELS) and high resolution transmission electron microscopy (HRTEM). In the SLR, This BMG alloy was strongly depended on the deformation temperature and the alloy exhibits important change in deformation behavior after a given time which is directly connected to the development of crystallization. Compressive stress impeded decomposition and consequently retarded forming of nano-crystal, which led to enlarge the homogeneous deformation region of the BMG alloy in SLR during compression test.

  • PDF

구조용 나노금속재료의 소성변형 특성 (Plastic Deformation Behavior of Structural Nano Metallic Materials)

  • 윤승채;팜쾅;복천희;곽은정;김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.25-26
    • /
    • 2007
  • At the time when nanostructured materials (NSMs) are becoming a major focus of materials research, the attention of researchers is turning more to their mechanical performance. In contrast with conventional coarse grained materials, which are either strong or ductile, but rarely both at the same time, it is expected that with NSMs both high strength and ductility can be achieved and confirmed by several experimental studies. In spite of the significant interest and efforts in the mechanical properties of NSMs, deformation mechanisms during plastic deformation as well as elastic deformation are not well established yet. In this talk, the deformation mechanisms of NSMs under various grain sizes, temperatures and strain rates were investigated. It is based on recent modelling that appears to provide a conclusive description of the phenomenology and the mechanisms underlying the mechanical properties of NSMs. Based on the theoretical model that provides an adequate description of the grain size dependence of elasticity and plasticity covering all grain size range from coarse down to the nanoscale, the tensile deformation response of NSMs, especially focusing on the deformation mechanisms was investigated.

  • PDF

Vibration analysis of nonlocal porous nanobeams made of functionally graded material

  • Berghouti, Hana;Adda Bedia, E.A.;Benkhedda, Amina;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제7권5호
    • /
    • pp.351-364
    • /
    • 2019
  • In this work, dynamic behavior of functionally graded (FG) porous nano-beams is studied based on nonlocal nth-order shear deformation theory which takes into the effect of shear deformation without considering shear correction factors. It has been observed that during the manufacture of "functionally graded materials" (FGMs), micro-voids and porosities can occur inside the material. Thus, in this work, the investigation of the dynamic analysis of FG beams taking into account the influence of these imperfections is established. Material characteristics of the FG beam are supposed to be vary continuously within thickness direction according to a "power-law scheme" which is modified to approximate material characteristics for considering the influence of porosities. A comparative study with the known results in the literature confirms the accuracy and efficiency of the current nonlocal nth-order shear deformation theory.

표면거칠기의 변화에 따른 a-C 박막의 나노마멸 거동 (Nano Wear Behavior of a-C Films with Variation of Surface Roughness)

  • 채영훈;장영준;나종주;김석삼
    • Tribology and Lubricants
    • /
    • 제20권3호
    • /
    • pp.125-131
    • /
    • 2004
  • Nano-wear behavior of amorphous carbon films was studied by Atomic Force Microscopy. The a-C films are deposited on Si(100) substrate by DC magnetron sputtering method. The influences of different surface roughness on the nano-wear are investigated. Nano-wear tests were carried out using a very sharp diamond coated tip. Its spring constant was 1.6 N/m and radius of curvature was 110 nm. Normal force used in the wear tests ranged 0 to 400 nN. It was found that surface depression occurred during scratching because of plastic deformation and abrasive wear (cutting St ploughing). Wear depth increased linearly with normal force. Changing the surface roughness variables according to the bias pulse control, the less surface roughness decreased the wear depth. The thickness did not affect the wear resistance.

A size-dependent study on buckling and post-buckling behavior of imperfect piezo-flexomagnetic nano-plate strips

  • Momeni-Khabisi, Hamed;Tahani, Masoud
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.427-440
    • /
    • 2022
  • In the present study, the nonlocal strain gradient theory is used to predict the size-dependent buckling and post-buckling behavior of geometrically imperfect nano-scale piezo-flexomagnetic plate strips in two modes of direct and converse flexomagnetic effects. The first-order shear deformation plate theory is used to analyze analytically nano-strips with simply supported boundary conditions. The nonlinear governing equations of equilibrium and associated boundary conditions are derived using the principle of minimum total potential energy with consideration of the von Kármán-type of geometric nonlinearity. A closed-form solution of governing differential equation is obtained, which is easily usable for engineers and designers. To validate the presented formulations, whenever possible, a comparison with the results found in the open literature is reported for buckling loads. A parametric study is presented to examine the effect of scaling parameters, plate slenderness ratio, temperature, the mid-plane initial rise, flexomagnetic coefficient, different temperature distributions, and magnetic potential, in case of the converse flexomagnetic effect, on buckling and post-buckling loads in detail.