Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.4.427

A size-dependent study on buckling and post-buckling behavior of imperfect piezo-flexomagnetic nano-plate strips  

Momeni-Khabisi, Hamed (Department of Mechanical Engineering, Ferdowsi University of Mashhad)
Tahani, Masoud (Department of Mechanical Engineering, Ferdowsi University of Mashhad)
Publication Information
Advances in nano research / v.12, no.4, 2022 , pp. 427-440 More about this Journal
Abstract
In the present study, the nonlocal strain gradient theory is used to predict the size-dependent buckling and post-buckling behavior of geometrically imperfect nano-scale piezo-flexomagnetic plate strips in two modes of direct and converse flexomagnetic effects. The first-order shear deformation plate theory is used to analyze analytically nano-strips with simply supported boundary conditions. The nonlinear governing equations of equilibrium and associated boundary conditions are derived using the principle of minimum total potential energy with consideration of the von Kármán-type of geometric nonlinearity. A closed-form solution of governing differential equation is obtained, which is easily usable for engineers and designers. To validate the presented formulations, whenever possible, a comparison with the results found in the open literature is reported for buckling loads. A parametric study is presented to examine the effect of scaling parameters, plate slenderness ratio, temperature, the mid-plane initial rise, flexomagnetic coefficient, different temperature distributions, and magnetic potential, in case of the converse flexomagnetic effect, on buckling and post-buckling loads in detail.
Keywords
flexomagnetic; geometrical imperfection; nano-plate strip; nonlocal strain gradient theory; piezomagnetic; post-buckling;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Gunda, J.B. (2014), "Thermal post-buckling and large amplitude free vibration analysis of Timoshenko beams: Simple closed-form solutions", Appl. Math. Model., 38(17-18), 4548-4558. https://doi.org/10.1016/j.apm.2014.02.019.   DOI
2 Gupta, R., Gunda, J.B., Ranga Janardhan, G. and Venkateswara, R.G. (2010), "Post-buckling analysis of composite beams: Simple and accurate closed-form expressions", Compos. Struct., 92(8), 1947-1956. https://doi.org/10.1016/j.compstruct.2009.12.010.   DOI
3 Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020.   DOI
4 Kundalwal, S.I., Shingare, K.B. and Rathi, A. (2019), "Effect of flexoelectricity on the electromechanical response of graphene nanocomposite beam", Int. J. Mech. Mater. Des., 15(3), 447-470. https://doi.org/10.1007/s10999-018-9417-6.   DOI
5 Li, L. and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016. 11.025.   DOI
6 Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02. 001.   DOI
7 Lukashev, P. and Sabirianov, R.F. (2010), "Flexomagnetic effect in frustrated triangular magnetic structures", Phys. Rev. B, 82(9), 094417. https://doi.org/10.1103/PhysRevB.82.094417.   DOI
8 Lu, L., Guo, X. and Zhao, J. (2017b), "A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms", Int. J. Eng. Sci., 119, 265-277. https://doi.org/10.1016/j.ijengsci.2017. 06.024.   DOI
9 Kundalwal, S.I. and Ray, M.C. (2016), "Smart damping of fuzzy fiber reinforced composite plates using 1-3 piezoelectric composites", J. Vib. Control., 22(6), 1526-1546. https://doi.org/10.1177/1077546314543726.   DOI
10 Malikan, M. and Eremeyev, V.A. (2021b), "Flexomagneticity in buckled shear de- formable hard-magnetic soft structures", Continuum Mech. Therm., 34(1), 1-16. https://doi.org/10.1007/s00161-021-01034-y.   DOI
11 Malikan, M. and Eremeyev, V.A. (2021a), "Flexomagnetic response of buckled piezomagnetic composite nanoplates", Compos. Struct., 267, 113932. https://doi.org/10.1016/j.compstruct. 2021.113932.   DOI
12 Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D. and Blinc, R. (2009), "Spontaneous flexoelectric/flexomagnetic effect in nanoferroics", Phys. Rev. B, 79(16), 165433. https://link.aps.org/doi/10.1103/PhysRevB.79.165433.   DOI
13 Asrari, R., Ebrahimi, F. and Kheirikhah, M.M. (2020), "On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells", Adv. Nano Res., 9(1), 33-45. https://doi.org/10.12989/anr.2020.9.1.033.   DOI
14 Bagheri, R. and Tadi Beni, Y. (2021), "On the size-dependent nonlinear dynamics of viscoelastic/flexoelectric nanobeams", J. Vib. Control, 27(17-18), 2018-2033. https://doi.org/10.1177/1077546320952225.   DOI
15 Barati, M.R. and Zenkour, A.M. (2019), "Thermal post-buckling analysis of closed circuit flexoelectric nanobeams with surface effects and geometrical imperfection", Mech. Adv. Mater. Struct., 26(17), 1482-1490. https://doi.org/10.1080/15376494.2018.1432821.   DOI
16 Belyaev, B.A., Izotov, A.V., Solovev, P.N. and Boev, N.M. (2020), "Strain-gradient-induced unidirectional magnetic anisotropy in nanocrystalline thin permalloy films", Physica Status Solidi (RRL), 14(1), 1900467. https://doi.org/10.1002/pssr.201900467.   DOI
17 Cai, R., Antohe, V.A., Nysten, B., Piraux, L. and Jonas, A.M. (2020), "Thermally induced flexo-type effects in nanopatterned multiferroic layers", Adv. Funct. Mater., 30(14), 1910371. https://doi.org/10.1002/adfm.201910371.   DOI
18 Mir, M. and Tahani, M. (2020), "Graphene-based mass sensors: Chaotic dynamics analysis using the nonlocal strain gradient model", Appl. Math. Model., 81, 799-817. https://doi.org/ 10.1016/j.apm.2020.01.022.   DOI
19 Malikan, M., Uglov, N.S. and Eremeyev, V.A. (2020), "On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures", Int. J. Eng. Sci., 157, 103395. https://doi.org/10.1016/j.ijengsci.2020.103395.   DOI
20 Malikan, M., Wiczenbach, T. and Eremeyev, V.A. (2021), "On thermal stability of piezo-flexomagnetic microbeams considering different temperature distributions", Continuum Mech. Therm., 33(4), 1281- 1297. https://doi.org/10.1007/s00161-021-00971-y.   DOI
21 Mirjavadi, S.S., Forsat, M., Barati, M.R., Abdella, G.M., Hamouda, A.M.S., Afshari, B.M. and Rabby, S. (2019), "Post-buckling analysis of piezo-magnetic nanobeams with geometrical imperfection and different piezoelectric contents", Microsyst. Technol., 25(9), 3477-3488. https://doi.org/10.1007/s00542-018-4241-3.   DOI
22 Moradi, R., Radhi, A. and Behdinan, K. (2020), "Damped dynamic behavior of an advanced piezoelectric sandwich plate", Compos. Struct., 243, 112243. https://doi.org/10.1016/j.compstruct.2020.112243.   DOI
23 Fahrner, W.R. (2005), Nanotechnology and Nanoelectronics: Materials, Devices, Measurement Techniques, Springer, Berlin, Germany.
24 Zhang, N., Zheng, S. and Chen, D. (2019), "Size-dependent static bending of flexomagnetic nanobeams", J. Appl. Phys., 126(22), 223901. https://doi.org/10.1063/1.5128940.   DOI
25 Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.   DOI
26 Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/ 10.1016/j.ijengsci.2004.09.006.   DOI
27 Pyatakov, A.P. and Zvezdin, A.K. (2009), "Flexomagnetoelectric interaction in multiferroics", Eur. Phys. J. B, 71(3), 419-427. https://doi.org/10.1140/epjb/e2009-00281-5.   DOI
28 Radgolchin, M. and Tahani, M. (2021), "Nonlinear vibration analysis of beam microgyroscopes using nonlocal strain gradient theory", Sens. Imag., 22(1), 1-25. https://doi.org/10.1007/s11220-021-00336-4.   DOI
29 Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells (2nd ed.), CRC Press, Florida, U.S.A.
30 Eliseev, E.A., Glinchuk, M.D., Khist, V., Skorokhod, V.V., Blinc, R. and Morozovska, A.N. (2011), "Linear magnetoelectric coupling and ferroelectricity induced by the flexomagnetic effect in ferroics", Phys. Rev. B, 84(17), 174112. https://link.aps.org/doi/10.1103/PhysRevB.84.174112.   DOI
31 Eliseev, E.A., Morozovska, A.N., Khist, V.V. and Polinger, V. (2019), Chapter Six- Effective Flexoelectric and Flexomagnetic Response of Ferroics In Solid State Physics, 70, 237-289, Academic Press, Massachusetts, U.S.A.
32 Sladek, J., Sladek, V., Xu, M. and Deng, Q. (2021), "A cantilever beam analysis with flexomagnetic effect", Meccanica, 56(9), 2281-2292. https://doi. org/10.1007/s11012-021-01357-9.   DOI
33 Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "Mechanicalhygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Adv. Aircr. Spacecr., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.   DOI
34 Shi, W., Guo, Y., Zhang, Z. and Guo, W. (2019), "Strain gradient mediated magnetism and polarization in monolayer V Se2", J. Phys. Chem. C, 123(40), 24988-24993. https:// doi.org/10.1021/acs.jpcc.9b08445.   DOI
35 Shi, Y., Li, N., Ye, J. and Ma, J. (2021), "Enhanced magneto-electric response in nanostructures due to flexoelectric and flexomagnetic effects", J. Magn. Magn. Mater., 521, 167523. https://doi.org/10.1016/j.jmmm.2020. 167523.   DOI
36 Shingare, K.B. and Kundalwal, S.I. (2019), "Static and dynamic response of graphene nanocomposite plates with flexoelectric effect", Mech. Mater., 134, 69-84. https://doi.org/10.1016/j.mechmat.2019.04.006.   DOI
37 Sidhardh, S. and Ray, M.C. (2018), "Flexomagnetic response of nanostructures", J. Appl. Phys., 124(24), 244101. https://doi.org/10. 1063/1.5060672.   DOI
38 Sun, X.P., Hong, Y.Z., Dai, H.L. and Wang, L. (2017), "Nonlinear frequency analysis of buckled nanobeams in the presence of longitudinal magnetic field", Acta Mechanica Solida Sinica, 30(5), 465-473. https://doi.org/10.1016/j.camss.2017.08. 002.   DOI
39 Wang, B. and Li, X.F. (2021), "Flexoelectric effects on the natural frequencies for free vibration of piezoelectric nanoplates", J. Appl. Phys., 129(3), 034102. https://doi.org/10.1063/5.0032343.   DOI
40 Xu, X. and Zheng, M. (2019), "Analytical solutions for buckling of size-dependent Timoshenko beams", Appl. Math. Mech., 40(7), 953-976. https://doi.org/10.1007/s10483-019-2494-8.   DOI
41 Lee, D., Yoon, A., Jang, S.Y., Yoon, J.G., Chung, J.S., Kim, M., Scott, J.F. and Noh, T.W. (2011), "Giant flexoelectric effect in ferroelectric epitaxial thin films", Phys. Rev. Lett, 107(5), 057602. https://doi.org/10.1103/PhysRevLett.107.057602.   DOI
42 Zhang, J.X., Zeches, R.J., He, Q., Chu, Y.H. and Ramesh, R. (2012), "Nanoscale phase boundaries: A new twist to novel functionalities", Nanoscale, 4(20), 6196-6204. http://doi.org/10.1039/C2NR31174G.   DOI
43 Moosavi, S.M., Sarani, Z., Chia, C.H., Gan, S., Azahari, N.A. and Kaco, H. (2017), "Hydrothermal synthesis, magnetic properties and characterization of CoFe2O4 nanocrystals", Ceram. Int., 43(10), 7889-7894. https://doi.org/10.1016/j.ceramint.2017. 03.110.   DOI
44 Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007. 04.004.   DOI