• Title/Summary/Keyword: Nano 입자

Search Result 1,078, Processing Time 0.032 seconds

Research Status on Flexible Electronics Fabrication by Metal Nano-particle Printing Processes (금속 나노입자 프린팅 공정을 이용한 유연전기소자 연구 현황)

  • Ko, Seung Hwan
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.131-138
    • /
    • 2010
  • Flexible electronics are the electronics on flexible substrates such as a plastic, fabric or paper, so that they can be folded or attached on any curved surfaces. They are currently recognized as one of the most innovating future technologies especially in the area of portable electronics. The conventional vacuum deposition and photolithographic patterning methods are well developed for inorganic microelectronics. However, flexible polymer substrates are generally chemically incompatible with resists, etchants and developers and high temperature processes used in conventional integrated circuit processing. Additionally, conventional processes are time consuming, very expensive and not environmentally friendly. Therefore, there are strong needs for new materials and a novel processing scheme to realize flexible electronics. This paper introduces current research trends for flexible electronics based on (a) nanoparticles, and (b) novel processing schemes: nanomaterial based direct patterning methods to remove any conventional vacuum deposition and photolithography processes. Among the several unique nanomaterial characteristics, dramatic melting temperature depression (Tm, 3nm particle~$150^{\circ}C$) and strong light absorption can be exploited to reduce the processing temperature and to enhance the resolution. This opens a possibility of developing a cost effective, low temperature, high resolution and environmentally friendly approach in the high performance flexible electronics fabrication area.

A Study on Particle Diffusion to Develop Faraday Cup Array of Particle Beam Mass Spectrometer System (Faraday cup array 개발을 위한 Particle Beam Mass Spectrometer 시스템 내에서의 입자 확산 연구)

  • Mun, Ji-Hun;Shin, Yong-Hyun;Kim, Tae-Sung;Kang, Sang-Woo
    • Particle and aerosol research
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The Faraday cup electrode of different size has been developed and evaluated to investigate the diffusion effect of particles by Brownian motion in a particle beam mass spectrometer(PBMS). Particles which focused and accelerated by aerodynamic lens are charged to saturation in an electron beam, and then deflected electrostatically into a Faraday cup detector for measurement of the particle current. The concentration of particles is converted from currents detected by Faraday cup. Measurements of particle current as a function of deflection voltage are combined with measured relationships between particle velocity and diameter, charge and diameter, and mass and diameter, to determine the particle size distribution. The particle currents were measured using 5, 10, 20, 40 mm sized Faraday cup that can be move to one direction by motion shaft. The current difference for each sizes as a function of position was compared to figure out diffusion effect during transport. Polystyrene latex(PSL) 100, 200 nm sized standard particles were used for evaluation. The measurement using 5 mm sized Faraday cup has the highest resolution in a diffusion distance and the smaller particles had widely diffused.

Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics (액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성)

  • Koo, Hye Young;Yun, Jung-Yeul;Yang, Sangsun;Lee, Hye-Moon
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

Nanosized Calcite in the Chinese Loess (중국 뢰스의 나노 방해석)

  • Jeong, Gi-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.255-260
    • /
    • 2007
  • The loess on the Chinese loess plateau is not only the accumulation of Asian dust but also the source materials of Hwangsa. The eolian carbonates of the loess were dissolved and reprecipitated to form secondary pedogenic carbonates by the post-depositional weathering during the interglacial time. Mineralogical analysis shows that the secondary calcites are composed mostly of a nanosized fibrous calcite with rather constant width ($30{\sim}50nm$) and highly variable length. The nano calcite is the major authigenic mineral, which occurs as the fine-grained matrix of the loess and paleosol. The nano calcite was recently reported in the Hwangsa, where it was originated from the source regions of Chinese loess plateau.

Adsorption and antibacterial property of impregnated activated carbon fiber (첨착 활성탄소섬유의 흡착 및 항균특성)

  • You, Seung-Han;Kim, Jung-Su;Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5370-5375
    • /
    • 2011
  • To introduce the antibacterial activity, ACF(activated carbon fiber) was impregnated by nano-sized Ag, Mn, and phosphoric acid. It was observed by the SEM analysis that Ag, Mn and phosphoric acid were properly impregnated at the ACF. The impregnated ACF showed lower adsorption performance than the pure ACF. It is found that ACFs impregnated by nano-sized Ag or phosphoric acid have a good antibacterial activity against bacillus cereus and salmonella entaritidis. but in the case of ACF impregnated with Mn, it have not any antibacterial effect on the bacillus cereus and salmonella entaritidis.

Analysis of Diesel Nano-particle Number Distribution Characteristics for Three Different Particle Measurement Systems (3개 입자측정스시템별 디젤 극미세입자의 수량분포 특성 비교)

  • Lee, Jin-Wook;Kim, Hong-Suk;Cho, Gyu-Baek;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.144-150
    • /
    • 2007
  • In recent years, the particle number emissions rather than particulate mass emissions in automotive engine have become the subject of controversial discussions. Recent results from the health effects studies imply that it is possible that particulate mass does not properly correlated with the variety of health effects attributed to diesel exhaust. So, the concern is instead now focusing on nano-sized particles emitted from I. C. engine. This study has been performed for the better understanding about the engine nano-particle for 3-measurement systems with different measuring principle. Firstly, EEPS is a newly introduced instrument for size distribution measurement of engine exhaust particles. It can measure nano-particles with an adequate resolution and in real time. In this study, the characteristics of EEPS were compared with ELPI and SMPS. As a research results, EEPS showed a same effect of engine load on the size distribution with ELPI and SMPS. But the quantitative results of EEPS were more similar to SMPS than ELPI, because the EEPS and SMPS use a same principle for classifying particles by size. The capability for transient measurement of EEPS was equivalent to that of ELPI.

An Experimental Study of Nano PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System to Meet EURO-IV (상용디젤엔진의 EURO-IV 배기규제 대응을 위한 Urea-SCR 시스템의 나노입자 배출특성에 관한 실험적 연구)

  • Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.128-136
    • /
    • 2007
  • It is well known that two representative methods satisfy EURO-IV regulation from EURO-III. The first method is to achieve the regulation through the reduction of NOx in an engine by utilizing relatively high EGR rate and the elimination of subsequently increased PM by DPF. However, it results in the deterioration of fuel economy due to relatively high EGR rate. The second is to use the high combustion strategy to reduce PM emission by high oxidation rate and trap the high NOx emissions with DeNOx catalysts such as Urea-SCR. While it has good fuel economy relative to the first method mentioned above, its infrastructure is demanded. In this paper, the number distribution of nano PM has been evaluated by Electrical Low Pressure Impactor(ELPI) and CPC in case of Urea-SCR system in second method. From the results, the particle number was increased slightly in proportion to the amount of urea injection on Fine Particle Region, whether AOC is used or not. Especially, in case of different urea injection pressure, the trends of increasing was distinguished from low and high injection pressure. As low injection pressure, the particle number was increased largely in accordance with the amount of injected urea solution on Fine Particle Region. But Nano Particle Region was not. The other side, in case of high pressure, increasing rate of particle number was larger than low pressure injection on Nano Particle Region. From the results, the reason of particle number increase due to urea injection is supposed that new products are composited from HCNO, sulfate, NH3 on urea decomposition process.

Modeling and Theoretical Analysis of Thermodynamic Characteristic of Nano Vibration Absorber (나노 진동 흡수기의 모델링 및 열역학적 특성 해석에 대한 이론적 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.93-99
    • /
    • 2003
  • In this study, new shock absorbing system is proposed by using nano-technology based on the theoretical analysis. The new shock absorbing system is complementary to the hydraulic damper, having a cylinder-piston-orifice construction. Particularly for new shock absorbing system, the hydraulic oil is replaced by a colloidal suspension, which is composed of a porous matrix and a lyophobic fluid. The matrix of the suspension is consisted of porous micro-grains with a special architecture: they present nano-pores serially connected to micro-cavities. Until now, only experimentally qualitative studies of new shock absorbing system have been performed, but the mechanism of energy dissipation has not been clarified. This paper presents a modeling and theoretical analysis of the new shock absorbing system thermodynamics, nono-flows and energy dissipation. Compared with hydraulic system, the new shock absorbing system behaves more efficiently, which absorb a large amount of mechanical energy, without heating. The theoretical computations agree reasonably well with the experimental results. As a result. the proposed new shock absorbing system was proved to be an effective one, which can replace with the conventional one.

Adsorption Characteristics of Non-degradable Eosin Y Dye by Carbon Nano Tubes (Carbon Nano Tubes에 의한 난분해성 염료 Eosin Y의 흡착 특성)

  • Lee, Min-Gyu;Yun, Jong-Won;Suh, Jung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.771-777
    • /
    • 2017
  • Adsorption characteristics of Eosin Y dye by carbon nano tubes (CNTs) were examined through batch experiments. CNTs used in the study had specific surface area of $106.9m^2/g$, porosity volume of $1.806cm^3/g$, and porosity diameter of $163.2{\AA}$, respectively. Adsorption experiments were carried out as function of contact time, initial solution pH (2~10), dye concentration (100, 150 and 200 mg/L), adsorbent dose (0.05~1.0 g) and temperature (293, 313 and 333 K). The adsorption was favoured at lower pHs and temperatures. Adsorption data were well described by the Langmuir model. The adsorption process followed the pseudo-second order kinetic model. The adsorption capacity decreased with increase in temperature. The results of the intraparticle diffusion model suggested that film diffusion and particle diffusion were simultaneously occured during the adsorption process. Thermodynamic studies suggested the spontaneous and endothermic nature of adsorption of Eosin Y dye onto CNTs.

Preparation of Ag Nano-Powder from Aqueous Silver Solution through Reductive Precipitation Method (환원침전법을 이용한 수용액으로부터 은 나노분말의 제조 연구)

  • Lee Hwa-Yaung;Oh Jong-Kee
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.21-27
    • /
    • 2005
  • As one of the hydrometallurgical processes available in the recycling of silver-bearing wastes, the preparation of Ag nano-powder was investigated by a reductive precipitation reaction in silver solution using sodium formaldehydesulfoxylate and ascorbic acid as a reducing agent. Silver solution was prepared by dissolving silver nitrate with distilled water, and Tamol NN8906, PVP, SDS and caprylic acid were also used respectively as the dispersant to avoid the agglomeration of particles during the reductive reaction. Ag particles obtained from the reduction reaction from silver solution were characterized using the particle size analyzer and TEM to determine the particle size distribution and morphology. It was found that about $40\%$ excess of sodium formaldehydesulfoxylate was required to reduce completely silver ions in the solution. It alto appeared that the particle size generated with sodium formaldehydesulfoxylate was much greater than that with ascorbic acid. As far as the effect of dispersant on the Ag particles was concerned, the particle size distribution showed typically bimodal distribution in case of Tamol/FVP while very broad distribution ranged from 0.01 to $100{\mu}m$ appeared in case of SDS/caprylic acid.