DOI QR코드

DOI QR Code

Adsorption Characteristics of Non-degradable Eosin Y Dye by Carbon Nano Tubes

Carbon Nano Tubes에 의한 난분해성 염료 Eosin Y의 흡착 특성

  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyoung National University) ;
  • Yun, Jong-Won (Department of Biotechnology, Daegu University) ;
  • Suh, Jung-Ho (Department of Environmental & Chemical Industry, Ulsan College)
  • Received : 2017.05.26
  • Accepted : 2017.07.28
  • Published : 2017.12.01

Abstract

Adsorption characteristics of Eosin Y dye by carbon nano tubes (CNTs) were examined through batch experiments. CNTs used in the study had specific surface area of $106.9m^2/g$, porosity volume of $1.806cm^3/g$, and porosity diameter of $163.2{\AA}$, respectively. Adsorption experiments were carried out as function of contact time, initial solution pH (2~10), dye concentration (100, 150 and 200 mg/L), adsorbent dose (0.05~1.0 g) and temperature (293, 313 and 333 K). The adsorption was favoured at lower pHs and temperatures. Adsorption data were well described by the Langmuir model. The adsorption process followed the pseudo-second order kinetic model. The adsorption capacity decreased with increase in temperature. The results of the intraparticle diffusion model suggested that film diffusion and particle diffusion were simultaneously occured during the adsorption process. Thermodynamic studies suggested the spontaneous and endothermic nature of adsorption of Eosin Y dye onto CNTs.

Carbon nano tubes (CNTs)를 흡착제로 사용하여 회분식 실험을 통해 염료 Eosin Y의 흡착특성을 조사하였다. 본 연구에 사용된 CNTs는 비표면적이 $106.9m^2/g$, 기공부피는 $1.806cm^3/g$, 기공직경은 $163.2{\AA}$이었다. CNTs를 이용한 Eosin Y의 흡착실험은 흡착시간, 초기 pH (2~10), 염료 농도(100, 150 및 200 mg/L), 흡착제의 양(0.05~1.0 g)과 온도(293, 313 및 333 K)를 변수로 사용하여 수행하였다. 흡착은 pH와 온도가 낮을수록 잘 이루어졌으며, Langmuir 모델식에 잘 적용되었다. 또한 흡착반응은 유사 2차 속도식에 잘 적용되었으며, 온도가 증가함에 따라 흡착량이 감소하였다. 입자 내 확산 모델 결과는 흡착 과정에서 막확산과 입자확산이 동시에 일어나는 것을 시사해 주었다. 열역학적 해석에 의하면 CNTs에 의한 염료 Eosin Y의 흡착은 자발적이고 흡열특성을 보였다.

Keywords

References

  1. Cassano, A., Molinari, R., Romano, M. and Drioli, E., "Treatment of Aqueous Effluents of the Leather Industry by Membrane Processes: A Review," J. Membr. Sci., 181(1), 111-126 (2001). https://doi.org/10.1016/S0376-7388(00)00399-9
  2. Tunay, O., Kabdasli, I., Eremektar, G. and Orhon, D., "Color Removal from Textile Wastewaters," Water Sci. Technol., 34(11), 9-16(1996). https://doi.org/10.1016/S0273-1223(96)00815-3
  3. Mittal, A., Mittal, J., Malviya, A., Kaur, D. and Gupta, V. K., "Adsorption of Hazardous Dye Crystal Violet from Wastewater by Waste Materials," J. Colloid Interface Sci., 343(2), 463-473 (2010). https://doi.org/10.1016/j.jcis.2009.11.060
  4. Wang, S., Boyjoo, Y., Choueib, A. and Zhu, H., "Removal of Dyes from Solution using Fly Ash and Red Mud," Water Res., 39(1), 129-138(2005). https://doi.org/10.1016/j.watres.2004.09.011
  5. Budavari, S., "The Merck Index," Ed. 12 Merck and Co., Inc., White house station, N.J., USA. 1996.
  6. Ciardelli, G., Corsi, L. and Marucci, M., "Membrane Separation for Wastewater Reuse in the Textile Industry," Resour. Conserv. Recycl. 31, 189-197(2000).
  7. Gupta, V. K. and Suhas, "Application of Low-cost Adsorbents for Dye Removal-A review," J. Environ Manage., 90(8), 2313-2342(2009). https://doi.org/10.1016/j.jenvman.2008.11.017
  8. Koch, M., Yediler, A., Lienert, D., Insel, G. and Kettrup, A., "Ozonation of Hydrolyzed Azo Dye Reactive Yellow 84 (Cl)," Chemosphere 46(1), 109-113(2002). https://doi.org/10.1016/S0045-6535(01)00102-3
  9. Malik, P. K. and Saha, S. K., "Oxidation of Direct Dyes with Hydrogen Peroxide using Ferrous Ion as Catalyst," Sep. Purif. Technol., 31(3), 241-250(2003). https://doi.org/10.1016/S1383-5866(02)00200-9
  10. Choy, K. K. H., Porter, J. F. and Mckay, G., "Langmuir Isotherm Models Applied to the Multicomponent Sorption of Acid Dyes from Effluent onto Activated Carbon," J. Chem. Eng., 45(4), 575-584(2000).
  11. Namasivayam, C., Muniasamy, N., Gayatri, K., Rani, M. and Ranganathan, K., "Removal of Dyes from Aqueous Solutions by Cellulosic Waste Orange Peel," Bioresour. Technol., 57(1), 37- 43(1996). https://doi.org/10.1016/0960-8524(96)00044-2
  12. Chatterjee, S., Chatterjee, S., Chatterjee, B. P., Das, A. R. and Guha, A. K., "Adsorption of a Model Anionic Dye, Eosin Y, from Aqueous Solution by Chitosan Hydrobeads," J. Colloid Interface Sci., 288(1), 30-35(2005). https://doi.org/10.1016/j.jcis.2005.02.055
  13. Lee, M. G., Kam, S. K. and Suh, K. H., "Adsorption of Nondegradable Eosin Y by Activated Carbon," J. Environ. Sci. Int., 21(5), 623-631(2012). https://doi.org/10.5322/JES.2012.21.5.623
  14. Njokua, V. O., Fooa, K. Y., Asifd, M. and Hameeda, B. H., "Preparation of Activated Carbons from Rambutan (Nephelium lappaceum) Peel by Microwave-induced KOH Activation for Acid Yellow 17 Dye Adsorption," Chem. Eng. J., 250(15), 198-204(2014). https://doi.org/10.1016/j.cej.2014.03.115
  15. Porkodi, K. and Vasanth Kumar, K., "Equilibrium, Kinetics and Mechanism Modeling and Simulation of Basic and Acid Dyes Sorption onto Jute Fiber Carbon: Eosin Yellow, Malachite Green and Crystal Violet Single Component Systems," J. Hazard. Mater., 143(1-2), 311-327(2007). https://doi.org/10.1016/j.jhazmat.2006.09.029
  16. Purkait, M. K., DasGupta, S. and De, S., "Adsorption of Eosin Dye on Activated Carbon and its Surfactant based Desorption," J. Environ. Manage., 76(2), 135-142(2005). https://doi.org/10.1016/j.jenvman.2005.01.012
  17. Wu, C. H., Adsorption of Reactive Dye onto Carbon Nanotubes: "Equilibrium, Kinetics and Thermodynamics," J. Hazard. Mater., 144(1-2), 93-100(2007). https://doi.org/10.1016/j.jhazmat.2006.09.083
  18. Shirmardi, M., Mesdaghinia, A., Mahvi, A. H., Nasseri, S., Nabizadeh, R. and Chem, E. J., "Kinetics and Equilibrium Studies on Adsorption of Acid Red 18 (Azo-Dye) using Multiwall Carbon Nanotubes (MWCNTs) from Aqueous Solution," Hindawi J. Chem., 9(4), 2371-2383(2012).
  19. Yao, Y., Xu, F., Chen, M., Xu, Z. and Zhu, Z., "Adsorption Behavior of Methylene Blue on Carbon Nanotubes," Bioresour. Technol., 101(9), 3040-3046(2010). https://doi.org/10.1016/j.biortech.2009.12.042
  20. Rodriguez, A., Ovejero, G., Sotelo, J. L., Mestanza, M., Garcia, J. and Environ, J., "Adsorption of Dyes on Carbon Nanomaterials from Aqueous Solutions," Sci. Health Part A, 45(12), 1642-1653 (2010). https://doi.org/10.1080/10934529.2010.506137
  21. Gupta, V. K., Agarwal, S. and Saleh, T. A., "Chromium Removal by Combining the Magnetic Properties of Iron Oxide with Adsorption Properties of Carbon Nanotubes," Water Res., 45(6), 2207-2212(2011). https://doi.org/10.1016/j.watres.2011.01.012
  22. Ren, X., Chen, C., Nagatsu, M. and Wang, X., "Carbon Nanotubes as Adsorbents in Environmental Pollution Management: A Review," Chem. Eng. J., 170(2-3), 395-410(2011). https://doi.org/10.1016/j.cej.2010.08.045
  23. Bhattacharyya, K. G. and Sharma, A., "Kinetics and Thermodynamics of Methylene Blue Adsorption on Neem (Azadirachta indica) Leaf Powder," Dyes Pigm., 65(1), 51-59(2005). https://doi.org/10.1016/j.dyepig.2004.06.016
  24. Machado, F. M., Bergmann, C. P., Lima, E. C. Adebayo, M. A. and Fagan, S. B., "Adsorption of a Textile Dye from Aqueous Ssolutions by Carbon Nanotubes," Mater. Res., 17(1), 153-160 (2014).
  25. Ai, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L. and Jiang, J., "Removal of Methylene Blue from Aqueous Solution with Magnetite Loaded Multi-wall Carbon Nanotube: Kinetic, Isotherm and Mechanism Analysis," J. Hazard. Mater., 198, 282-1290(2011). https://doi.org/10.1016/j.jhazmat.2011.10.041
  26. Lee, C. H., Park, J. M. and Lee, M. G., "Competitive Adsorption in Binary Solution with Different Mole Ratio of Sr and Cs by Zeolite A : Adsorption Isotherm and Kinetics," J. Environ. Sci. Int., 24(2), 151-162(2015). https://doi.org/10.5322/JESI.2015.24.2.151
  27. Lagergren, S., "About the Theory of so-called Adsorption of Soluble Substances," Kunglia Svenska Vetenskapsa-kademiens Handlingar, 24(4), 1-39(1898).
  28. Ho, Y. S. and McKay, G., "The Kinetics of Sorption of Basic Dyes from Aqueous Solution by Sphagnum Moss Peat," Can. J. Chem. Eng., 76(4), 822-827(1998). https://doi.org/10.1002/cjce.5450760419
  29. Weber, W. J. and Morris, J. C., "Kinetics of Adsorption on Carbon Solution," J. Sanitary Eng. Div. Am. Soc. Civ. Eng., 89(2), 31-39(1963).
  30. Kannan, K. and Sundaram, M. M., "Kinetics and Mechanism of Removal of Methylene Blue by Adsorption on Various Carbons-A Comparative Study," Dyes Pigm., 51(1), 25-40(2001). https://doi.org/10.1016/S0143-7208(01)00056-0
  31. Huang, X. Y., Bin, J. P., Bu, H. T., Jiang, G. B. and Zeng, M. H., "Removal of Anionic Dye Eosin Y from Aqueous Solution using Ethylenediamine Modified Chitosan," Carbohyd. Polym., 84(2), 1350-1356(2011). https://doi.org/10.1016/j.carbpol.2011.01.033
  32. Langmuir, I., "The Adsorption of Gases on Plane Surface of Glass, Mica and Platinum," J. Am. Chem. Soc., 40(9), 1361-1403 (1918). https://doi.org/10.1021/ja02242a004
  33. Freundlich, H. M. F., "Over the Adsorption in Solution," J. Phys. Chem., 57, 385-470(1906).
  34. Madrakian, T., Afkhami, A., Ahmadi, M. and Bagheri, H., "Removal of Some Cationic Dyes from Aqueous Solutions using Magneticmodified Multi-walled Carbon Nanotubes," J. Hazard. Mater., 196, 109-114(2011). https://doi.org/10.1016/j.jhazmat.2011.08.078
  35. Chatterjee, S., Chatterjee, S., Chatterjee, B. P. and Guha, A. K., "Adsorptive Removal of Congo Red, a Carcinogenic Textile Dye by Chitosan Hydrobeads: Binding Mechanism, Equilibrium and Kinetics," Colloids Surf. A: Physicochem. Eng. Aspects, 299(1- 3), 146-152(2007). https://doi.org/10.1016/j.colsurfa.2006.11.036
  36. Sekar, M., Sakthi, V. and Rengaraj, S., "Kinetics and Equilibrium Aadsorption Sstudy of Lead (II) onto Activated Carbon Prepared from Coconut Shell," J. Colloid Interface Sci., 279(2), 307-313 (2004). https://doi.org/10.1016/j.jcis.2004.06.042
  37. Senthilkumaar, S. and Kalaamani, P., Subburaam, "Liquid Phase Adsorption of Crystal Violet onto Activated Carbons Derived from Male Flowers of Coconut Tree," J. Hazard. Mater. B., 136(3), 800-808(2006). https://doi.org/10.1016/j.jhazmat.2006.01.045