• Title/Summary/Keyword: Na/S Battery

Search Result 52, Processing Time 0.033 seconds

Room Temperature Na/S Batteries Using a Thick Film of Na β"-Alumina Composite Electrolyte and Gel-Type Sulfur Cathode (후막 Na β"-Alumina 복합 고체 전해질 및 Gel-Type 유황 양극을 활용한 상온형 Na-S 전지의 특성 평가)

  • Lee, Jinsil;Yu, Hakgyoon;Lee, Younki;Kim, Jae-Kwang;Joo, Jong Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.411-417
    • /
    • 2020
  • In this study, we introduce a Na β"-alumina composite thick film as a solid electrolyte, to reduce the resistance of electrolyte for a Na/S battery. An alumina/zirconia composite material was used to enhance the mechanical properties of the electrolyte. A solid electrolyte of about 40 ㎛ thick was successfully fabricated through the conversion and tape-casting methods. In order to investigate the effect of the surface treatment process of the solid electrolyte on the battery performance, the electrolyte was polished by dry and wet processes, respectively, and then the Na/S batteries were prepared for analyzing the battery characteristics. The battery with the dry process performed much better than the battery made with the wet process. As a result, the battery manufactured by the dry process showed excellent performance. Therefore, it is confirmed that the surface treatment process of the solid electrolyte has an important effect on the battery capacity and coulombic efficiency, as well as the interface reaction.

Development of Room Temperature Na/S Secondary Batteries (상온형 나트륨/유황 이차전지 개발 동향)

  • RYU, HOSUK;KIM, INSOO;PARK, JINSOO
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.753-763
    • /
    • 2016
  • High temperature sodium/sulfur battery(Na/S battery) has good electrochemical properties, but, the battery has some problems such as explosion and corrosion at al. because of using the liquid electrodes at high temperature and production of high corrosion. Room temperature sodium/sulfur batteries (NAS batteries) is developed to resolve of the battery problem. To recently, room temperature sodium/sulfur batteries has higher discharge capacity than its of lithium ion battery, however, cycle life of the battery is shorter. Because, the sulfur electrode and electrolyte have some problem such as polysulfide resolution in electrolyte and reaction of anode material and polysulfide. Cycle life of the battery is improved by decrease of polysulfide resolution in electrolyte and block of reaction between anode material and polysulfide. If room temperature sodium/sulfur batteries (NAS batteries) with low cost and high capacity improves cycle life, the batteries will be commercialized batteries for electric storage, electric vehicle, and mobile electric items.

Discharge Properties of Sodium-sulfur Batteries at Room Temperature (상온용 나트륨/유황전지의 방전 특성)

  • Kim, T.B.;Ahn, H.Y.;Hur, H.Y.
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.193-197
    • /
    • 2006
  • The sodium/sulfur(Na/S) battery has many advantages such as high theoretical specific energy(760Wh/kg), and low material cost based on the abundance of electrode material in the earth. It has been reported that the electrochemical properties of sodium/sulfur cell above $300^{\circ}C$, utilized a solid ceramic electrolyte and liquid sodium and sulfur electrodes. A lot of researches have been performed in this field. Recently, Na/S battery system was applied for electricity storage system for load-leveling. One of severe problems of sodium/sulfur battery was high operating temperature above $300^{\circ}C$, which could induce the explosion and corrosion by molten sodium, sulfur and polysulfides. In order to develop sodium battery operated at low temperature, sodium ion battery has been studied using carbon anode, and sodium oxides cathodes. However, the energy densities of the sodium ion batteries were much lower than high temperature sodium/sulfur cell. In this study, the sodium/sulfur battery with 1M $NaCF_3SO_3$ is tested at room temperature. The charge-discharge mechanism was discussed based on XRD, DSC, SEM and EDS results.

Sodium Sulfur Battery for Energy Storage System (대용량 에너지 저장시스템을 위한 나트륨 유황전지)

  • Kim, Dul-Sun;Kang, Sungwhan;Kim, Jun-Young;Ahn, Jou-Hyeon;Lee, Chang-Hui;Jung, Keeyoung;Park, Yoon-Cheol;Kim, Goun;Cho, Namung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.111-122
    • /
    • 2013
  • Sodium sulfur (NAS) battery is a high energy storage system (ESS). These days, as the use of renewable green energy like wind energy, solar energy and ocean energy is rapidly increasing, the demand of ESS is increasing and NAS battery is considered to be one of the most promising ESS. Since NAS battery has a high energy density(3 times of lead acid battery), long cycle life and no self-charge and discharge, it is a good candidate for ESS. A NAS battery consists of sulfur as the positive electrode, sodium as the negative electrode and ${\beta}$"-alumina as the electrolyte and a separator simultaneously. Since sulfur is an insulator, carbon felt should be used as conductor with sulfur and so the composition and property of the cathode could largely influence the cell performance and life cycle. Therefore, in this paper, the composition of NAS battery, the property of carbon felt and sodium polysulfides ($Na_2S_x$, intermediates of discharge), and the effects of these factors on cycle performance of cells are described in detail.

Porosity Control of the Sealing Glass for Joining Alumina Components in a NaS Battery Cell Packaging (NaS 배터리 셀 패키지의 알루미나 컴포넌트 접합용 Sealing Glass의 기공율 제어)

  • Kim, Chi Heon;Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.57-61
    • /
    • 2016
  • Thick film sealing glass paste is required for cell packaging of NaS based battery for energy storage system, to join the beta-alumina electrolyte tube and the alpha-alumina battery cell cap components. This paper presents the effect of the particle sizes of seal glass powder and the sealing temperatures on the microstructure of the glass sealants was investigated. It was found that the larger in the particle size of seal glass powder, the smaller the pore volume and the number of pores in a unit area. Also, the number of pores decreased with increasing the sealing temperatures while the pore size was increased. This result enables the control of porosity, pore distribution and number of pores in a microstructure of glass sealing component by proper selection of glass powders particle size and sealing temperature.

A Newly Designed Fixed Bed Redox Flow Battery Based on Zinc/Nickel System

  • Mahmoud, Safe ELdeen M.E.;Youssef, Yehia M.;Hassan, I.;Nosier, Shaaban A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.236-243
    • /
    • 2017
  • A fixed-bed zinc/nickel redox flow battery (RFB) is designed and developed. The proposed cell has been established in the form of a fixed bed RFB. The zinc electrode is immersed in an aqueous NaOH solution (anolyte solution) and the nickel electrode is immersed in the catholyte solution which is a mixture of potassium ferrocyanide, potassium ferricyanide and sodium hydroxide as the supporting electrolyte. In the present work, the electrode area has been maximized to $1500cm^2$ to enforce an increase in the energy efficiency up to 77.02% at a current density $0.06mA/cm^2$ using a flow rate $35cm^3/s$, a concentration of the anolyte solution is $1.5mol\;L^{-1}$ NaOH and the catholyte solution is $1.5mol\;L^{-1}$ NaOH as a supporting electrolyte mixed with $0.2mol\;L^{-1}$ equimolar of potassium ferrocyanide and potassium ferricyanide. The outlined results from this study are described on the basis of battery performance with respect to the current density, velocity in different electrolytes conditions, energy efficiency, voltage efficiency and power of the battery.

Fabrication of Battery Checking & Monitoring System (밧데리 진단 및 감시장치 제작)

  • Lee, Sang-Cheol;Na, Chae-Dong;Yoo, Jae-Moon;Choi, Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2156-2159
    • /
    • 1998
  • This paper describes a Battery Checking & Monitoring System for monitoring battery cell and power system in Uninterruptible Power Supplies(UPS). The system is capable of measuring, in a matter of setting time, float and discharge voltage of up to 240 cells in a single installation, and has the memory capacity to store battery's alarm data information on up to 200 separate sites. This system are easy to maintain and attain cost effectively, so that prepared for meeting the customer's service needs immediately. The system is additionally programmed with a each model, that will enable to accurately determine the remain battery capacity in a UPS system following a short discharge test. It is also equipped with remote interrogation and control facilities.

  • PDF

Development of the Emergency Generator Equipments Diagnosis System (비상용 발전설비 진단시스템 개발)

  • Lee, Sang-Cheol;Na, Chae-Dong;Lee, Seong-Beom;Yoo, Jae-Moon;Choi, Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2590-2593
    • /
    • 1999
  • This paper describes the development of Emergency Generator Equipments Diagnosis System for monitoring generator equipments and battery system. This system is capable of measuring on up to 20 separate sites of generator, engine and periphral equipment's. Battery system also capable of measure the setting time, float and discharge voltage of up to 240 cells in a single installation, and has the memory capacity to store battery's alarm data information on up to 200 separate sites. This system are easy to maintain and attain cost effectively, so that prepared for meeting the customer's service needs immediately. The system is additionally programmed with a each model, that will enable to accurately determine the generator equipments and remain battery capacity in a system following a short discharge test. It is also equipped with remote interrogation and control facilities.

  • PDF

Effect of Auxetic Structure of PVdF on Tin Anode Stability for Na-ion Batteries (소듐 이온전지용 주석 음극의 안정화를 위한 PVdF 옥세틱 구조의 영향)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.507-513
    • /
    • 2018
  • This study investigates the viability of using a Na-ion battery with a tin(Sn) anode to mitigate the vulnerability caused by volume changes during discharge and charge cycling. In general, the volume changes of carbon material do not cause any instability during intercalation into its layer structure. Sn has a high theoretical capacity of $847mAh\;g^{-1}$. However, it expands dramatically in the discharge process by alloying Na-Sn, placing the electrode under massive internal stress, and particularly straining the binder over the elastic limit. The repeating strain results in loss of active material and its electric contact, as well as capacity decrease. This paper expands the scope of fabrication of Na-ion batteries with Sn by fabricating the binder as an auxetic structure with a unique feature: a negative Poisson ratio (NPR), which increases the resistance to internal stress in the Na-Sn alloying/de-alloying processes. Electrochemical tests and micrograph images of auxetic and common binders are used to compare dimensional and structural differences. Results show that the capacity of an auxetic-structured Sn electrode is much larger than that of a Sn electrode with a common-structured binder. Furthermore, using an auxetic structured Sn electrode, stability in discharge and charge cycling is obtained.

Modeling of Battery Energy Storage System at Substation for Load Leveling and Its Economic Evaluation (부하 평준화를 위한 변전소 설치 배터리 에너지 저장장치의 모델 및 경제성 평가에 관한 연구)

  • Cho, Sung-Min;Shin, Hee-Sang;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.950-956
    • /
    • 2012
  • As development of battery technologies, the installation of Battery Energy Storage System (BESS) increased. The BESS can be used for various purposes such like frequency response, load leveling, and fluctuation mitigation of renewable energy generators. In this paper, three state BESS model is proposed. the BESS model considering charge, discharge and keeping efficiency, and life cycle according to depth of discharge (DOD). Then, the benefit and cost of BESS installed at substation for load leveling are summarized. The economic evaluation of BESS is analyzed using net present values (NPV) analysis. In case study, the NPV analysis of NaS battery system is carried out using the proposed BESS model. Because the result of economic evaluation of BESS using nowadays cost data is not positive, the sensitivity analysis of BESS is conducted by changing the capital cost and energy cost.