Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.6.507

Effect of Auxetic Structure of PVdF on Tin Anode Stability for Na-ion Batteries  

Park, Jinsoo (Department of Advanced Aerospace Materials Engineering, Kyungwoon University)
Publication Information
Journal of Powder Materials / v.25, no.6, 2018 , pp. 507-513 More about this Journal
Abstract
This study investigates the viability of using a Na-ion battery with a tin(Sn) anode to mitigate the vulnerability caused by volume changes during discharge and charge cycling. In general, the volume changes of carbon material do not cause any instability during intercalation into its layer structure. Sn has a high theoretical capacity of $847mAh\;g^{-1}$. However, it expands dramatically in the discharge process by alloying Na-Sn, placing the electrode under massive internal stress, and particularly straining the binder over the elastic limit. The repeating strain results in loss of active material and its electric contact, as well as capacity decrease. This paper expands the scope of fabrication of Na-ion batteries with Sn by fabricating the binder as an auxetic structure with a unique feature: a negative Poisson ratio (NPR), which increases the resistance to internal stress in the Na-Sn alloying/de-alloying processes. Electrochemical tests and micrograph images of auxetic and common binders are used to compare dimensional and structural differences. Results show that the capacity of an auxetic-structured Sn electrode is much larger than that of a Sn electrode with a common-structured binder. Furthermore, using an auxetic structured Sn electrode, stability in discharge and charge cycling is obtained.
Keywords
Na-ion battery; tin; auxetics; negative Poisson's ratio (NPR); binder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Tarascon and M. Armand: Nature, 414 (2001) 359.   DOI
2 N. Nitta, F. Wu, J. T. Lee and G. Yushin: Mater. Today, 18 (2015) 252.   DOI
3 M. R. Palacin: Chem. Soc. Rev., 38 (2009) 2565.   DOI
4 P. W. Gruber, P. A. Medina, G. A. Keoleian, S. E. Kesler, M. P. Everson and T. J. Wallington: J. Ind. Ecol., 15 (2011) 760.   DOI
5 J. Speirs, M. Contestabile, Y. Houari and R. Gross: Renewable Sustainable Energy Rev., 35 (2014) 183.   DOI
6 Y. Liu, N. Zhang, L. Jiao, Z. Tao and J. Chen: Adv. Funct. Mater., 25 (2015) 214.   DOI
7 D.A. Stevens and J.R. Dahn: J. Electrochem. Soc., 147 (2000) 1271.   DOI
8 S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh and K. Fujiwara: Adv. Funct. Mater., 21 (2011) 3859.   DOI
9 V. L. Chevrier and G. Ceder: J. Electrochem. Soc., 158 (2011) A1011.   DOI
10 L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie and J. Liu: Chem. Commun., 48 (2012) 3321.   DOI
11 J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai and H. Yang: Chem. Commun., 48 (2012) 7070.   DOI
12 L. Baggetto, J. K. Keum, J. F. Browning and G. M. Veith: Electrochem. Commun., 34 (2013) 41.   DOI
13 S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata and S. Kuze: Electrochem. Commun., 21 (2012) 65.   DOI
14 Y. Liu, Y. Xu, Y. Zhu, J. N. Culver, C. A. Lundgren, K. Xu and C. Wang: ACS Nano, 7 (2013) 3627.   DOI
15 J. W. Wang, X. H. Liu, S. X. Mao and J. Y. Huang: Nano Lett., 12 (2012) 5897.   DOI
16 M. M. Doeff, Y. Ma, S. J. Visco and L. C. D. Jonghe: J. Electrochem. Soc., 140 (1993) L169.   DOI
17 S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata and S. Kuze: Electrochem. Commun., 21 (2012) 65.   DOI
18 J. W. Wang, X. H. Liu, S. X. Mao and J. Y. Huang: Nano Lett., 12 (2012) 5897.   DOI
19 X. Han, Y. Liu, Z. Jia, Y. C. Chen, J. Wan, N. Weadock, K. J. Gaskell, T. Li and L. Hu: Nano Lett., 14 (2013) 139.
20 Y. M. Lin, P. R. Abel, A. Gupta, J. B. Goodenough, A. Heller and C. B. Mullins: ACS Appl. Mater. Interfaces, 5 (2013) 8273.   DOI
21 K. Dai, H. Zhao, Z. Wang, X. Song, V. Battaglia and G. Liu: J. Power Sources, 263 (2014) 276.   DOI
22 K. E. Evans and A. Alderson: Adv. Mater., 12 (2000) 617.   DOI
23 B. D. Caddock and K. E. Evans: J. Phys. D, Appl. Phys., 22 (1989) 1877.   DOI
24 A. Yeganeh-Haeri, D. J. Weidner and J. B. Parise: Science, 257 (1992) 650.   DOI
25 M. Siddorn, F. Coudert, K. E. Evans and A. Marmier: Phys. Chem. Chem. Phys., 17 (2015) 17927.   DOI
26 A. Alderson, J. Rasburn, S. Ameer-Beg, P. G. Mullarkey, W. Perrie and K. E. Evans: Ind. Eng. Chem. Res., 39 (2000) 654.   DOI
27 I. A. Aksay, J. T. Groves, S. M. Gruner, P. C. Y. Lee, R. K. Prud'-homme, W. H. Shih, S. Torquato and G. M. Whitesides: Proc. SPIE Int. Soc. Opt. Eng., 2716 (1996) 280.
28 A. Alderson: Chem. Ind., 10 (1999) 384.
29 K. L. Alderson, A. Alderson, G. Smart, V. R. Simkins and P. J. Davies: Plast. Rubber Compos., 31 (2002) 344.   DOI
30 M. K. Datta, R. Epur, P. Saha, K. Kadakia, S.K. Park and P.N. Kumta: J. Power Sources, 225 (2013) 316.   DOI
31 L. Yang, O. Harrysson, H. West and D. Cormier: Acta Mater., 60 (2012) 3370.   DOI
32 Q. Shi, M. Yu, X. Zhou, Y. Yan and C. Wan: J. Power Sources, 103 (2002) 286.   DOI
33 W. Pu, X. He, L. Wang, C. Jiang and C. Wan: J. Membr. Sci., 272 (2006) 11.   DOI
34 L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie and J. Liu: Chem. Commun., 48 (2012) 3321.   DOI