Browse > Article
http://dx.doi.org/10.5229/JKES.2013.16.3.111

Sodium Sulfur Battery for Energy Storage System  

Kim, Dul-Sun (Department of Materials Engineering and Convergence Technology, Department of Chemical and Biological Engineering, Gyeongsang National University)
Kang, Sungwhan (Department of Materials Engineering and Convergence Technology, Department of Chemical and Biological Engineering, Gyeongsang National University)
Kim, Jun-Young (Department of Materials Engineering and Convergence Technology, Department of Chemical and Biological Engineering, Gyeongsang National University)
Ahn, Jou-Hyeon (Department of Materials Engineering and Convergence Technology, Department of Chemical and Biological Engineering, Gyeongsang National University)
Lee, Chang-Hui (Ultra Large Capacity Battery Research Team, Research Institute of Industrial Science & Technology)
Jung, Keeyoung (Ultra Large Capacity Battery Research Team, Research Institute of Industrial Science & Technology)
Park, Yoon-Cheol (Ultra Large Capacity Battery Research Team, Research Institute of Industrial Science & Technology)
Kim, Goun (Ultra Large Capacity Battery Research Team, Research Institute of Industrial Science & Technology)
Cho, Namung (Ultra Large Capacity Battery Research Team, Research Institute of Industrial Science & Technology)
Publication Information
Journal of the Korean Electrochemical Society / v.16, no.3, 2013 , pp. 111-122 More about this Journal
Abstract
Sodium sulfur (NAS) battery is a high energy storage system (ESS). These days, as the use of renewable green energy like wind energy, solar energy and ocean energy is rapidly increasing, the demand of ESS is increasing and NAS battery is considered to be one of the most promising ESS. Since NAS battery has a high energy density(3 times of lead acid battery), long cycle life and no self-charge and discharge, it is a good candidate for ESS. A NAS battery consists of sulfur as the positive electrode, sodium as the negative electrode and ${\beta}$"-alumina as the electrolyte and a separator simultaneously. Since sulfur is an insulator, carbon felt should be used as conductor with sulfur and so the composition and property of the cathode could largely influence the cell performance and life cycle. Therefore, in this paper, the composition of NAS battery, the property of carbon felt and sodium polysulfides ($Na_2S_x$, intermediates of discharge), and the effects of these factors on cycle performance of cells are described in detail.
Keywords
Sodium sulfur (NAS) battery; Energy storage system (ESS); Carbon felt; Sodium polysulfides; High resistance layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Hidaka, K. Furuta, M. Shimizu, A. Okuno, and H. Rachi, 'Current collector of positive electrode and sodium-sulfur battery using the same' U.S. Patent, 6,902,842 B2 (2005).
2 NGK Insulators Ltd. and Tokyo Electric Power Co. Inc., Japan Patent, 4076331 (2008).
3 R. J. Bones and T. L. Markin, 'Polaization and corrosion in sodium/sulfur cells' J. Electrochem. Soc., 125, 1587 (1978).   DOI
4 A. Kunimoto, M. Shimizu, I. Morotomi, and E. Nomura, Proceedings of 6th International Conference on Batteries for Utility Energy Storage, Gelsenkirchen and Herne, Germany, 21-23 September 1999, Workshop T3-A.
5 R. Okuyama, H. Nakashima, T. Sano, and E. Nomura, 'The effect of metal sulfides in the cathode on Na/S battery performance' J. Power Sources, 93, 50 (2001).   DOI   ScienceOn
6 T. Ando, K. Togoe, and Y. Harada, 'Sulfide corrosion resistance and adhesive strength of a high Cr-Fe alloy plasma spray coating applied to the inner surface of cylindrical aluminum containers of NAS batteries to store electrical power for extended period of time' J. Japan Inst. Metals, 72, 581 (2008).   DOI   ScienceOn
7 O. E. Jaroudi, E. Picquenard, N. Gobeltz, A. Demortier, and J. Corset, 'Raman Spectroscopy Study of the Reaction between Sodium Sulfide or Disulfide and Sulfur: Identity of the Species Formed in Solid and Liquid Phases' Inorg. Chem., 38, 2917 (1999).   DOI   ScienceOn
8 D. G. Oei, 'The Sodium-Sulfur System. II. Polysulfides of Sodium', Inorganic Chemistry, 12, 438 (1973).   DOI
9 Z. H. Wang, 'The influene of carbon felt on the performance of sodium-sulfur cells' Solid State Ionics, 3, 425 (1981).
10 M. P. J. Brennan, 'The influence of carbon matrix characteristics on the performance of sulfur electrodes for sodium-sulfur cells' J. Electrochem. Soc.; Electrochemical Science and Technology, 125, 705 (1978).   DOI
11 R. P. Tischer, 'The Sulfur Electrode - Fused Salts and Solid Electrolytes' Academic Press (1983).
12 Toho Tenax Co. Ltd., Japan Patent, 4407854 (2009).
13 NGK Insulators Ltd. and Tokyo Electric Power Co. Inc., Japan Patent, 3416607 (2003).
14 NGK Insulators Ltd. and Tokyo Electric Power Co. Inc., Japan Patent, 3363124 (2002).
15 Tokyo Electric Power Co. Inc. and NGK Insulators Ltd., Japan Patent, 2832155 (1998).
16 NGK Insulators Ltd. and Tokyo Electric Power Co. Inc., Japan Patent, 3195685 (2001).
17 K. Kinoshita and S. C. Leach, 'Mass-transfer study of carbon felt, flow-through electrode' J. Electrochem. Soc., Electrochemical Science and Technology, 129, 1993 (1982).   DOI
18 J. G. Garcia, P. Bonete, E. Exposito, V. Montiel, A. Aldaz, and R. T. Macia, 'Characterization of a carbon felt electrode: structural and physical properites' J. Mater. Chem., 9, 419 (1999).   DOI   ScienceOn
19 J. Fally, C. Lasne, Y. Lazennec, and P. Margotin, 'Some aspects of sodium-sulfur cell operation' J. Electochem. Soc., 120, 1292 (1973).   DOI
20 A. L. Mehaute and P. Bordet, U.S. Patent, 4,037,028 (1977).
21 G. Brauer, 'Handbuch der praparativen anorganischem Chemie', Ferdinand Enke Verlag, Stuttgart, (1960)
22 B. Cleaver, A. J. Davies, and M. D. Hames, 'Properties of fused polysulphides- I. The electrical conductivity of fused sodium and potassium polysulphides' Electrochim, Acta, 18, 719 (1973).   DOI   ScienceOn
23 T. G. Pearson and P. L. Robinson, 'The polysulphides of the alkalis. Part I. Sodium(i)' J. Chem. Soc., 1473 (1930).   DOI
24 F. Feher and H. J. Berthold, 'Beitrage zur Chemie des Schwefels. XIV. Uber das System Natrium-Schwefel' Z. Anorg. Chem., 273, 144 (1953).   DOI
25 G. Brauer, 'Handbook of Preparative Inorganic Chemistry', 2nd ed., Academic Press, NY, (1965).
26 M. P. J. Brennan, 'Power Sources 5' Ed. D. H. Collins, Academic Press, NY, 693(1977).
27 N. K. Gupta and R. P. Tischer, 'Thermodynamic and physical properties of molten sodium polysulfides from open-circuit voltage measurements' J. Electrochem. Soc., 119, 1033 (1972).   DOI
28 G. Weddigen, H. Kleinschmager, and S. Hoppe, 'Synthesis of sodium polysulfides' J. Chem. Res. (S), 3, 96 (1978).
29 A. Wicker, G. Desplanches, and H. Saisse, 'Behaviour of chromium-coated steels in sodium polysulphide environments' Thin Solid Films, 83, 437 (1981).   DOI   ScienceOn
30 A. P. Brown and J. E. Battles, 'The Direct Synthesis of Sodium Polysulfides from Sodium and Sulfur' Synth. React. Inorg. Met. -Org. Chem., 14, 945 (1984).   DOI   ScienceOn
31 J. Sangster and A. D. Pelton, 'The Na-S (Sodium-Sulfur) System' Journal of Phase Equilibria, 18, 89 (1997).   DOI
32 O. E. Jaroudi, E. Picquenard, A. Demortier, J. P. Lelieur, and J. Corset, 'Polysulfide Anions II: Structure and Vibrational Spectra of the S4 2− and S5 2− Anions. Influence of the Cations on Bond Length, Valence, and Torsion Angle' Inorg. Chem., 39, 2593 (2000).   DOI   ScienceOn
33 K. B. Song, S. K. Ha, J. W. Park, D. J. Kweon, and K H. Kim, 'Hydrid load forecasting method with analysis of temperature sensitivities' IEEE Transactions on Power System, 21, 869 (2006).   DOI   ScienceOn
34 M. Kamibayashi, and K. Tanaka, 'Recent sodium sulfur battery application' Transmission and Distribution Conference and Exposition, IEEE/PES, 1169 (2001).
35 K. Iba, R. Ideta and K. 'Analysis and operational records of NAS battery' Suzuki, Universities Power Engineering Conference, UPEC'06, Proceeding of the 41st International, 491(2006).
36 E. Kodama and Y. Kurashima, 'Development of a compact sodium-sulphur battery' Power Engineering Journal, 13, 136 (1999).   DOI
37 T. Oshima and M. Kajita, 'Development of sodium-sulfur battery' Int. J. Appl. Ceram. Technol., 1, 269 (2004).
38 P. Braford and P. E. Roberts, 'Sodium-sulfur(NaS) batteries for utility energy storage application' Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Centry, IEEE 1 (2008).
39 Z. Wen, J. Cao, Z. Gu, X. Xu, F. Zhang, and Z. Lin, 'Research on sodium sulfur battery for energy storage' Solid State Ionics, 179, 1697 (2008).   DOI   ScienceOn
40 A. Bito, 'Over of the sodium-sulfur battery for the IEEE stationary battery committee' Power Engineering Society General Meeting, IEEE, 2, 1232 (2005).
41 J. L. Sudworth and A.R. Tilley, 'Sodium sulfur battery' Chapman & Hall, New York (1985).
42 J. Sangster and A. D. Pelton, 'The Na-S(sodium-sulfur) system' Journal of phase equilibria, 18, 1 (1997).
43 D. G. OEI, 'The sodium-sulfur system. I. Differential thermal analysis' Inorganic Chemistry, 12, 435 (1973).   DOI
44 G. J. Janz, J. R. Downey, Jr., E. Roduner, G. J. Wasilczyk, J. W. Coutts, and A. Eluard, 'Raman Studies of Sulfur- Containing Anions in Inorganic Polysulfides. Sodium Polysulfides' Inorganic Chemistry, 15, 1759 (1976).   DOI
45 Y. Hida, R. Yokoyma, K. Iba, and K. Tanaka, 'Practical load following operation of NAS battery' 8th WSEAS International Conference on Power Systems (PS 2008), Santander, Cantabria, Spain, September 23-25, 101 (2008).