Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.5.411

Room Temperature Na/S Batteries Using a Thick Film of Na β"-Alumina Composite Electrolyte and Gel-Type Sulfur Cathode  

Lee, Jinsil (Department of Advanced Material Engineering, Chungbuk National University)
Yu, Hakgyoon (Department of Energy Convergence Engineering, Cheongju University)
Lee, Younki (Department of Material Engineering and Convergence Technology, Gyeongsang National University)
Kim, Jae-Kwang (Department of Energy Convergence Engineering, Cheongju University)
Joo, Jong Hoon (Department of Advanced Material Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.5, 2020 , pp. 411-417 More about this Journal
Abstract
In this study, we introduce a Na β"-alumina composite thick film as a solid electrolyte, to reduce the resistance of electrolyte for a Na/S battery. An alumina/zirconia composite material was used to enhance the mechanical properties of the electrolyte. A solid electrolyte of about 40 ㎛ thick was successfully fabricated through the conversion and tape-casting methods. In order to investigate the effect of the surface treatment process of the solid electrolyte on the battery performance, the electrolyte was polished by dry and wet processes, respectively, and then the Na/S batteries were prepared for analyzing the battery characteristics. The battery with the dry process performed much better than the battery made with the wet process. As a result, the battery manufactured by the dry process showed excellent performance. Therefore, it is confirmed that the surface treatment process of the solid electrolyte has an important effect on the battery capacity and coulombic efficiency, as well as the interface reaction.
Keywords
Na-S battery; Beta alumina; Solid electrolyte; Polysulfide; Thick film; Room temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 W. I. Archer, R. D. Armstrong, D. P. Sellick, W. G. Bugden, and J. H. Duncan, J. Mater. Sci., 15, 2066 (1980). [DOI: https://doi.org/10.1007/BF00550633]   DOI
2 J. R. Dygas, G. Fafilek, and M. W. Breiter, Solid State Ion., 119, 115 (1999). [DOI: https://doi.org/10.1016/S0167-2738(98)00492-5]   DOI
3 N. Chawla and M. Safa, Electronics, 8, 1201 (2019). [DOI: https://doi.org/10.3390/electronics8101201]   DOI
4 X. L. Wei, Y. Xia, X. M. Liu, H. Yang, and X. D. Shen, Electrochim. Acta, 136, 250 (2014). [DOI: https://doi.org/10.1016/j.electacta.2014.05.096]   DOI
5 C. J. Rydh, J. Power Sources, 80, 21 (1999). [DOI: https://doi.org/10.1016/S0378-7753(98)00249-3]   DOI
6 Z. Yang, J. Zhang, M.C.W. Kinetner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Chem. Rev., 111, 3577 (2011). [DOI: https://doi.org/10.1021/cr100290v]   DOI
7 I. Kim, J. Y. Park, C. H. Kim, J. W. Park, J. P. Ahn, J. H. Ahn, K. W. Kim, and H. J. Ahn, J. Power Sources, 301, 332 (2016). [DOI: https://doi.org/10.1016/j.jpowsour.2015.09.120]   DOI
8 H. Pan, Y. S. Hu, and L. Chen, Energy Environ. Sci., 6, 2338 (2013). [DOI: https://doi.org/10.1039/C3EE40847G]   DOI
9 C. W. Park, H. S. Ryu, K. W. Kim, J. H. Ahn, J. Y. Lee, and H. J. Ahn, J. Power Sources, 165, 450 (2007). [DOI: https://doi.org/10.1016/j.jpowsour.2006.11.083]   DOI
10 Y. X. Wang, W. H. Lai, S. L. Chou, H. K. Liu, and S. X. Dou, Adv. Mater., 32, 1903952 (2020). [DOI: https://doi.org/10.1002/adma.201903952]   DOI
11 T. Zhu, X. Dong, Y. Liu, Y. G. Wang, C. Wang, and Y. Y. Xia, ACS Appl. Energy Mater., 2, 5263 (2019). [DOI: https://doi.org/10.1021/acsaem.9b00953]   DOI
12 Z. Wen, J. Cao, Z. Gu, X. Xu, F. Zhang, and Z. Lin, Solid State Ionics, 179, 1697 (2008). [DOI: https://doi.org/10.1016/j.ssi.2008.01.070]   DOI
13 D. Kumar, S. B. Kuhar, and D. K. Kanchan. J. Energy Storage, 18, 133 (2018). [DOI: https://doi.org/10.1016/j.est.2018.04.021]   DOI
14 S. S. Suh, C. W. Yi, and K. Kim, J. Kor. Electrochem. Soc., 15, 1 (2012). [DOI: https://doi.org/10.5229/JKES.2012.15.1.001]   DOI
15 M. Ogawa, K. Yoshida, and K. Harada, SEI Tech. Rev., 74, 88 (2012).
16 G. S. Kim, Electr. Electron. Mater., 30, 20 (2017).
17 X. Lu, G. Xia, J. P. Lemmon, and Z. Yang, J. Power Sources, 195, 2431 (2010). [DOI: https://doi.org/10.1016/j.jpowsour.2009.11.120]   DOI
18 L. Ghadbeigi, A. Szendrei, P. Moreno, T. D. Sparks, and A. V. Virkar, Solid State Ionics, 290, 77 (2016). [DOI: https://doi.org/10.1016/j.ssi.2016.04.006]   DOI
19 X. Lu, G. Li, J. Y. Kim, K. D. Meinhardt, and V. L. Sprenkle, J. Power Sources, 295, 167 (2015). [DOI: https://doi.org/10.1016/j.jpowsour.2015.06.147]   DOI
20 T. Ando, A. Sakuda, M. Tatsumisago, and A. Hayashi, Electrochem. Commun., 116, 106741 (2020). [DOI: https://doi.org/10.1016/j.elecom.2020.106741]   DOI
21 G. Yamaguchi and K. Suzuki, Bull. Chem. Soc. Jpn., 41, 93 (1968). [DOI: https://doi.org/10.1246/bcsj.41.93]   DOI
22 M. Bettman and C. R. Peters, J. Phys. Chem., 73, 1774 (1969). [DOI: https://doi.org/10.1021/j100726a024]   DOI
23 D. Vladikova, Proc. of the International Workshop "Advanced Techniques for Energy Sources Investigation and Testing" (Sofia, Bulgaria, 2004) p. 4.
24 L. Ghadbeigi, A. Szendrei, P. Moreno, T. D. Sparks, and A. V. Virkar, Solid State Ionics, 290, 77 (2016). [DOI: https://doi.org/10.1016/j.ssi.2016.04.006]   DOI
25 Y. Sheng, P. Sarkar, and P. S. Nicholson, J. Mater. Sci., 23, 958 (1988). [DOI: https://doi.org/10.1007/BF01153995]   DOI