• Title/Summary/Keyword: NO_X$

Search Result 5,659, Processing Time 0.032 seconds

Sensitivity of Ozone to NOx and VOCs in a Street Canyon (도로 협곡에서 NOx와 VOCs에 대한 오존의 민감도)

  • Lee, Kwang-Yeon;Kwak, Kyung-Hwan;Park, Seung-Bu;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.307-316
    • /
    • 2013
  • The sensitivity of ozone to $NO_x$ and volatile organic compounds (VOCs) emission rates under different ventilation rates and $NO_2-to-NO_x$ emission ratios in a street canyon is investigated using a chemistry box model. The carbon bond mechanism IV (CBM-IV) with 36 gaseous species and 93 chemical reactions is incorporated. $NO_x$ and VOCs emission rates considered range from 0.01 to $0.30ppb\;s^{-1}$ with intervals of $0.01ppb\;s^{-1}$. Three different ventilation rates and three different $NO_2-to-NO_x$ emission ratios are considered. The simulation results show that the ozone concentration decreases with increasing $NO_x$ emission rate but increases with increasing VOCs emission rate. When the emission ratio of VOCs to $NO_x$ is smaller than about 4, the ozone concentration is lower in the street canyon than in the background. On average, the magnitude of the sensitivity of ozone to $NO_x$ emission rate is significantly larger than that to VOCs emission rate. As the $NO_x$ emission rate increases, the magnitude of the sensitivity of ozone to $NO_x$ and VOCs emission rates decreases. Because the ozone concentration is lower in the street canyon than in the background, the increased ventilation rate enhances ozone inflow from the background. Therefore, the increase in ventilation rate results in the increase in ozone concentration and the decrease in the magnitude of the sensitivity of ozone to $NO_x$ and VOCs emission rates when the emission ratio of VOCs to $NO_x$ is smaller than about 4. On the other hand, the increase in $NO_2-to-NO_x$ emission ratio results in the increase in ozone concentration because the chemical ozone production due to the $NO_2$ photolysis is enhanced. In the present experimental setup, the contribution of the change in $NO_2-to-NO_x$ emission ratio to the change in the sensitivity of ozone to $NO_x$ emission rate is larger than that of the change in ventilation rate.

The Characteristics of NOx Formation in Stainless Mixed Acid Pickling Process and The Effect of Hydrogen Peroxide Addition on NOx Formation (스테인레스 혼산 산세 공정에서 NOx 생성 특성과 과산화수소첨가에 따른 영향)

  • Yoon, Jeyong;Yie, Jaeeui;Lee, Sujin;Lee, Younghwan;Huh, Jin;Park, Sungkook;Chun, Heedong
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.96-108
    • /
    • 1996
  • $NO_x$ is mainly emitted from mixed acid pickling process in the stainless industry and its impact to the environment has been worried over. This study which may be considered as one of the development of clean technologies, differing from the traditional end pipe technology is about how to reduce $NO_x$ emission through the modification of corresponding process. This study consists of two parts. First, the influence of various reaction parameters in a acid pickling process on $NO_x$ emission was investigated. Second, the influence of hydrogen peroxide on $NO_x$ formation, which is known as inhibitor of $NO_x$ emission, was investigated. Major findings in this study are as follows. The important reaction parameters which have a great influence on $NO_x$ emission are the reaction temperature and the concentration of fluoric acid. The concentration of nitric acid, some of which results in $NO_x$ compound is not as important as the concentration of fluoric acid. Synthetic mixed acid of nitric acid and fluoric acid itself in absent of pickling plate contributed the $NO_x$ emission, however, its impact was negligible in terms of quantity. The addition of hydrogen peroxide to the acid pickling process significantly contributed to the reduction of $NO_x$ emission and successfully achieved 80% reduction of $NO_x$ emission at the condition of $9.51{\times}10^{-2}mole\;hydrogen\;peroxide/m^2$ pickling area. This result was compared to literature value from Avesta steel process, indicating a sixth of hydrogen peroxide addition of Avesta's in achieving a same amount of $NO_x$ reduction. The region of the economic hydrogen peroxide addition per unit area of plate to be pickled from the result of this study was established.

  • PDF

Effect of Initial Toluene Concentration on the Photooxidation of Toluene -NOx- Air Mixture - I. Change of Gaseous Species (초기 톨루엔 농도가 톨루엔 -NOx- 공기 혼합물의 광산화 반응에 미치는 영향 - I. 가스상 물질의 변화)

  • Lee Young-Mee;Bae Gwi-Nam;Lee Seung-Bok;Kim Min-Cheol;Moon Kil-Choo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.15-26
    • /
    • 2005
  • An experimental investigation of the gas-phase photooxidation of toluene-NO$_{x}$-air mixtures at sub-ppm concentrations has been carried out in a 6.9 m3, indoor smog chamber irradiated by blacklights. Measured parameters in the toluene-NO$_{x}$ experiments included $O_3$, NO, NO$_2$, NO$_{x}$, CO, SO$_2$ toluene, and air temperature. The initial toluene concentration ranged from 225 ppb to 991 ppb and the initial concentration ratio of toluene/NO$_{x}$ in ppbC/ppb was in the range of 5~20. It was found that the variation of gaseous species with irradiation time caused by the photooxidation of toluene-NO$_{x}$-air mixtures depended on the initial toluene concentration for similar concentration ratio of toluene/NO$_{x}$. The dependency of initial toluene concentration on the photooxidation of toluene-NO$_{x}$-air mixtures for toluene/NO$_{x}$=5~6 seemed to be opposite to that for toluene/NO$_{x}$=10~11. The arriving time at maximum ozone concentration depended on both initial toluene concentration and initial concentration ratio of toluene/NO$_{x}$. However, the maximum concentration of ozone formed by photooxidation depended only on the initial toluene concentration.luene concentration.

Effect of Initial Toluene Concentration on the Photooxidation of Toluene-NOx-Air Mixture -II. Aerosol Formation and Growth (초기 톨루엔 농도가 톨루엔- NOx-공기 혼합물의 광산화 반응에 미치는 영향 - II. 입자상 물질의 생성 및 성장)

  • Lee Young-Mee;Bae Gwi-Nam;Lee Seung-Bok;Kim Min-Cheol;Moon Kil-Choo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.27-38
    • /
    • 2005
  • An experimental investigation of the gas-phase photooxidation of toluene-NO$_{x}$-air mixtures at sub-ppm concentrations has been carried out in a 6.9 ㎥, indoor smog chamber irradiated by blacklights. Measured parameters in the toluene-NO$_{x}$ experiments included aerosol, $O_3$, NO, NO$_2$, NO$_{x}$ CO, SO$_2$ toluene, and air temperature. The initial toluene concentration ranged from 225 ppb to 991 ppb and the initial concentration ratio of toluene/NO$_{x}$ in ppbC/ppb was in the range of 5~20. It was found that the variation of aerosol number concentration with irradiation time caused by the photooxidation of toluene-NO$_{x}$-air mixtures depended on the initial toluene concentration for similar concentration ratio of toluene/NO$_{x}$. The dependency of initial toluene concentration on the photooxidation of toluene-NO$_{x}$-air mixtures for toluene/NO$_{x}$= 5~6 seemed to be opposite to that for toluene/NO$_{x}$=10~11. The maximum number concentration of aerosols formed by photooxidation and the aerosol yield depended on both initial toluene concentration and initial concentration ratio of toluene/NO$_{x}$. In this study, the aerosol yield, defined as aerosol formed per unit toluene consumed, was found to be 0.01~0.16.und to be 0.01~0.16.

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.

Estimation of Real-Driving NOx Emission Characteristics from Light-Duty Diesel Vehicles with PEMS (PEMS를 이용한 소형 경유차의 실주행 NOx 배출특성 평가)

  • Park, Yeon Jae;Kwon, Sang Il;Park, Jun Hong;Lee, Jai Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.562-572
    • /
    • 2015
  • $NO_x$ emissions from diesel vehicles have been regarded as a main cause of high $NO_2$ concentration in metropolitan area. Recent studies have shown that the on-road $NO_x$ emissions of diesel vehicles are quite higher than the emission limits specified with the pre-defined test method for emission certification. To reduce air pollutants effectively, the discrepancy of emissions in certification and real-driving conditions should be tackled. In this study, the real-driving emissions have been estimated with portable emission measurement system (PEMS). The results of this study have shown that the on-road $NO_x$ emissions from diesel vehicles have been decreased as the introduction of stricter emission regulation, EURO-6, but additional reduction should be still required and robust technologies should be applied to control $NO_x$ in real-driving conditions. RDE-LDV (Real Driving Emission - Light Duty Vehicles) test method being developed in the European Union can represent excessive on-road $NO_x$ emissions of diesel vehicles as applied emission technologies and can be a solution to remove discrepant $NO_x$ emissions between certification and Korean real-driving conditions. Among the $NO_x$ reduction technologies for EURO-6 diesel vehicles, selective catalytic reduction (SCR) system has shown the better performance than lean $NO_x$ trap (LNT) system to control on-road $NO_x$ emissions. Implementing RDE-LDV will require vehicle manufacturers to adopt the more effective $NO_x$ reduction technology in real driving conditions.

Conversion of NOx by Plasma-hydrocarbon Selective Catalytic Reduction Process (플라즈마-탄화수소 선택적 촉매환원공정을 이용한 질소산화물 저감 연구)

  • Jo, Jin-Oh;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.103-111
    • /
    • 2018
  • A plasma-catalytic combined process was used as an attempt to improve the conversion efficiency of nitrogen oxides ($NO_x$) over a wide temperature range ($150{\sim}500^{\circ}C$) to cope with the exhaust gas whose temperature varies greatly. Since the catalytic $NO_x$ reduction is effective at high temperatures where the activity of the catalyst itself is high, the $NO_x$ reduction was carried out without plasma generation in the high temperature region. On the other hand, in the low temperature region, the plasma was created in the catalyst bed to make up for the decreased catalytic activity, thereby increasing the $NO_x$ conversion efficiency. Effects of the types of catalysts, the reaction temperature, the concentration of the reducing agent (n-heptane), and the energy density on $NO_x$ conversion efficiency were examined. As a result of comparative analysis of various catalysts, the catalytic $NO_x$ conversion efficiency in the high temperature region was the highest in the case of the $Ag-Zn/{\gamma}-Al_2O_3$ catalyst of more than 90%. In the low temperature region, $NO_x$ was hardly removed by the hydrocarbon selective reduction process, but when the plasma was generated in the catalyst bed, the $NO_x$ conversion sharply increased to about 90%. The $NO_x$ conversion can be maintained high at temperatures of $150{\sim}500^{\circ}C$ by the combination of plasma in accordance with the temperature change of the exhaust gas.

Fabrication of Stack-Structured Gas Sensor of LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3 and Its NOx Sensing Properties (LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3의 적층구조를 가지는 가스센서 제조와 그의 NOx 검지특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.423-428
    • /
    • 2015
  • Impedancemetric $NO_x$ (NO and $NO_2$) gas sensors were designed with a stacked-layer structure and fabricated using $LaCr_xCo_{1-x}O_3$ (x = 0, 0.2, 0.5, 0.8 and 1) as the receptor material and $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ plates as the solid-electrolyte transducer material. The $LaCr_xCo_{1-x}O_3$ layers were prepared with a polymeric precursor method that used ethylene glycol as the solvent, acetyl acetone as the chelating agent, and polyvinylpyrrolidone as the polymer additive. The effects of the Co concentration on the structural, morphological, and $NO_x$ sensing properties of the $LaCr_xCo_{1-x}O_3$ powders were investigated with powder X-ray diffraction, field emission scanning electron microscopy, and its response to 20~250 ppm of $NO_x$ at $400^{\circ}C$ (for 1 kHz and 0.5 V), respectively. When the as-prepared precursors were calcined at $700^{\circ}C$, only a single phase was detected, which corresponded to a perovskite-type structure. The XRD results showed that as the Co concentration of the $LaCr_xCo_{1-x}O_3$powders increased, the crystal structure was transformed from an orthorhombic phase to a rhombohedral phase. Moreover, the $LaCr_xCo_{1-x}O_3$ powders with $0{\leq}x<0.8$ had a rhombohedral symmetry. The size of the particles in the $LaCr_xCo_{1-x}O_3$powders increased from 0.1 to $0.5{\mu}m$ as the Co concentration increased. The sensing performance of the stack-structured $LaCr_xCo_{1-x}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensors was found to divide the impedance component between the resistance and capacitance. The response of these sensors to NO gas was more sensitive than that to $NO_2$ gas. Compared to other impedancemetric sensors, the $LaCr_{0.8}Co_{0.2}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensor exhibited good reversibility and reliable sensingresponse properties for $NO_x$ gases.

On the $NO_x$ in Direct Injection diesel engine (직접분사식 디이젤의$NO_x$에 관하여)

  • 안수길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 1976
  • To investigate the relation of $NO_x$ emission and consumption rate in a direct injection diesel engine with a multihole nozzle under same fuel consumption and rpm, a naphthyl ethylenediaming method on NO, emission and Tektronix oscilloscop on the indicator diagrams have been used. Comparisons of the $NO_x$ emission and fuel consumption rate made on various conditions have led to the fllowing results. 1. The higher the injection pressure in the later injection time the lower $NO_x$ emission and the fuel consumption rate have been attained. 2. By the change of nozzle hole diameter under the same injection pressure, the $NO_x$ emission was much more lowered in the small diameter than large one, but fuel consumption rate was in inverse proption to the $NO_x$ emission. 3. The effect of injection spray angle, $\frac{1_n}{d_n}$ on $NO_x$ emission, fuel consumption rate under same injection time and injection pressure was neglectable.

  • PDF

Removal of Nitrogen Oxides Using Hydrocarbon Selective Catalytic Reduction Coupled with Plasma (플라즈마가 결합된 탄화수소 선택적 촉매환원 공정에서 질소산화물(NOx)의 저감)

  • Ihm, Tae Heon;Jo, Jin Oh;Hyun, Young Jin;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2016
  • Low-temperature conversion of nitrogen oxides using plasma-assisted hydrocarbon selective catalytic reduction of (HC-SCR) was investigated. Plasma was created in the catalyst-packed bed so that it could directly interact with the catalyst. The effect of the reaction temperature, the shape of catalyst, the concentration of n-heptane as a reducing agent, the oxygen content, the water vapor content and the energy density on $NO_x$ removal was examined. $NO_x$ conversion efficiencies achieved with the plasma-catalytic hybrid process at a temperature of $250^{\circ}C$ and an specific energy input (SIE) of $42J\;L^{-1}$ were 83% and 69% for one-dimensional Ag catalyst ($Ag\;(nanowire)/{\gamma}-Al_2O_3$) and spherical Ag catalyst ($Ag\;(sphere)/{\gamma}-Al_2O_3$), respectively, whereas that obtained with the catalyst-alone was considerably lower (about 30%) even with $Ag\;(nanowire)/{\gamma}-Al_2O_3$ under the same condition. The enhanced catalytic activity towards $NO_x$ conversion in the presence of plasma can be explained by the formation of more reactive $NO_2$ species and partially oxidized hydrocarbon intermediates from the oxidation of NO and n-heptane under plasma discharge. Increasing the SIE tended to improve $NO_x$ conversion efficiency, and so did the increase in the n-heptane concentration; however, a further increase in the n-heptane concentration beyond $C_1/NO_x$ ratio of 5 did not improve the $NO_x$ conversion efficiency any more. The increase in the humidity affected negatively the $NO_x$ conversion efficiency, resulting in lowering the $NO_x$ conversion efficiency at the higher water vapor content, because water molecules competed with $NO_x$ species for the same active site. The $NO_x$ conversion efficiency increased with increasing the oxygen content from 3 to 15%, in particular at low SIE values, because the formation of $NO_2$ and partially oxidized hydrocarbon intermediates was facilitated.