Effect of Initial Toluene Concentration on the Photooxidation of Toluene-NOx-Air Mixture -II. Aerosol Formation and Growth

초기 톨루엔 농도가 톨루엔- NOx-공기 혼합물의 광산화 반응에 미치는 영향 - II. 입자상 물질의 생성 및 성장

  • 이영미 (한국과학기술연구원 대기자원연구센터) ;
  • 배귀남 (한국과학기술연구원 대기자원연구센터) ;
  • 이승복 (한국과학기술연구원 대기자원연구센터) ;
  • 김민철 (한국과학기술연구원 대기자원연구센터) ;
  • 문길주 (한국과학기술연구원 대기자원연구센터)
  • Published : 2005.02.01

Abstract

An experimental investigation of the gas-phase photooxidation of toluene-NO$_{x}$-air mixtures at sub-ppm concentrations has been carried out in a 6.9 ㎥, indoor smog chamber irradiated by blacklights. Measured parameters in the toluene-NO$_{x}$ experiments included aerosol, $O_3$, NO, NO$_2$, NO$_{x}$ CO, SO$_2$ toluene, and air temperature. The initial toluene concentration ranged from 225 ppb to 991 ppb and the initial concentration ratio of toluene/NO$_{x}$ in ppbC/ppb was in the range of 5~20. It was found that the variation of aerosol number concentration with irradiation time caused by the photooxidation of toluene-NO$_{x}$-air mixtures depended on the initial toluene concentration for similar concentration ratio of toluene/NO$_{x}$. The dependency of initial toluene concentration on the photooxidation of toluene-NO$_{x}$-air mixtures for toluene/NO$_{x}$= 5~6 seemed to be opposite to that for toluene/NO$_{x}$=10~11. The maximum number concentration of aerosols formed by photooxidation and the aerosol yield depended on both initial toluene concentration and initial concentration ratio of toluene/NO$_{x}$. In this study, the aerosol yield, defined as aerosol formed per unit toluene consumed, was found to be 0.01~0.16.und to be 0.01~0.16.

Keywords

References

  1. 문길주 등(2004) 스모그 챔버를 이용한 소모그 생성 메커니즘 규명, 한국과학기술연구원 보고서, M1-0204-00-0049(UCN 2595-7550-9)
  2. 박주연(2003) 대기 중 이차 에어로졸 생성에 대한 광도와 톨루엔의 영향 연구, 이화여자대학교 과학기술대학원 환경학과 석사학위논문
  3. 배귀남, 김민철, 이승복, 송기범, 진현철, 문길주(2003) 실내 스모그 챔버의 설계 및 성능평가, 한국대기환경학회지, 19(4), 437-449
  4. 이영미, 배귀남, 이승복, 김민철, 문길주(2005) 초기 톨루엔 농도가 톨루엔-$NO_{x}$-공기 혼합물의 광산화 반응에 미치는 영향-I. 가스상 물질의 변화, 한국대기환경학회지. 21(1), 15-26
  5. Atkinson, R. (1994) Gas-phase tropospheric chemistry of organic compounds, J. of Physical and Chemical Reference Data, Monograph, 2, 1-216
  6. Atkinson, R. (2000) Atmospheric chemistry of VOCs and $NO_{x}$, Atmospheric Environment, 34, 2063-2101 https://doi.org/10.1016/S1352-2310(99)00460-4
  7. Cocker III, D.R., R.C. Flagan, and J.H. Seinfeld (2001) State-of-the-art chamber facility for studying atmospheric aerosol chemistry, Environ. Sci. and Technol., 35, 2594-2601 https://doi.org/10.1021/es0019169
  8. Dodge, M.C. (2000) Chemical oxidant mechanisms for air quality modeling: Critical review, Environ. Sci. and Technol., 34, 2103-2130
  9. Forstner, H.J., R.C. Flagan, and J.H. Seinfeld (1997) Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition, Environ. Sci. and Technol., 31, 1345-1358 https://doi.org/10.1021/es9605376
  10. Hurley, M.D., O. Sokolov, T.J. Wallington, H. Takekawa, M. Karasawa, B. Klotz, I. Barnes, and K.H. Becker (2001) Organic aerosol formation during the atmospheric degradation of toluene, Environ. Sci. and Technol., 35(7), 1358-1366 https://doi.org/10.1021/es0013733
  11. Izumi, K. and T. Fukuyama (1990) Photochemical aerosol formation from aromatic hydrocarbons in the presence of $NO_{x}$, 24A(6), 1433-1441
  12. Jang, M. and R.M. Kamens (2001) Characterization of secondary aerosol from the photooxidation of toluene in the presence of $NO_{x}$ and I-propene, Environ. Sci. and Technol., 35, 3626-3639 https://doi.org/10.1021/es010676+
  13. Lee, S.B., G.N. Bae, and K.C. Moon (2004) Aerosol wall loss in teflon film chambers filled with ambient air, J. of Korean Society for Atmospheric Environment, 20(E1), 35-41
  14. Markert, F. and P. Pagsberg (1993) UV spectra and kinetics of radicals produced in the gas phase reactions of CI, F, and OH with toluene, Chem. Phys. Lett., 209, 445-454 https://doi.org/10.1016/0009-2614(93)80115-6
  15. McMurry, P.H. and D. Grosjean (1985) Gas and aerosol wall losses in Teflon film smog chambers, Environ. Sci. and Technol., 19(12), 1176-1182 https://doi.org/10.1021/es00142a006
  16. McMurry, P.H. and D.J. Radar (1985) Aerosol wall losses in electrically charged chambers, Aerosol Science and Technology, 4, 249-268 https://doi.org/10.1080/02786828508959054
  17. Na, K.S. and Y. Kim (2001) Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea, Atmospheric Environment, 35, 2603-2614 https://doi.org/10.1016/S1352-2310(00)00464-7
  18. Odum, J.R., T.P.W. Junkamp, R.J. Griffin, H.J.L. Forstner, R.C. Flagan, and J.H. Seinfeld (1997) Aromatics, reformulated gasoline, and atmospheric organic aerosol formation, Environ. Sci. and Technol., 31, 1890-1897 https://doi.org/10.1021/es960535l
  19. Stern, J.E., R.C. Flagan, D. Grosjean, and J.H. Seinfeld (1987) Aerosol formation and growth in atmospheric aromatic hydrocarbon photooxidation, Environ. Sci. and Technol., 21, 1224-1231 https://doi.org/10.1021/es00165a011