Browse > Article
http://dx.doi.org/10.14478/ace.2015.1130

Removal of Nitrogen Oxides Using Hydrocarbon Selective Catalytic Reduction Coupled with Plasma  

Ihm, Tae Heon (Department of Chemical and Biological Engineering, Jeju National University)
Jo, Jin Oh (Department of Chemical and Biological Engineering, Jeju National University)
Hyun, Young Jin (Department of Chemical and Biological Engineering, Jeju National University)
Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.1, 2016 , pp. 92-100 More about this Journal
Abstract
Low-temperature conversion of nitrogen oxides using plasma-assisted hydrocarbon selective catalytic reduction of (HC-SCR) was investigated. Plasma was created in the catalyst-packed bed so that it could directly interact with the catalyst. The effect of the reaction temperature, the shape of catalyst, the concentration of n-heptane as a reducing agent, the oxygen content, the water vapor content and the energy density on $NO_x$ removal was examined. $NO_x$ conversion efficiencies achieved with the plasma-catalytic hybrid process at a temperature of $250^{\circ}C$ and an specific energy input (SIE) of $42J\;L^{-1}$ were 83% and 69% for one-dimensional Ag catalyst ($Ag\;(nanowire)/{\gamma}-Al_2O_3$) and spherical Ag catalyst ($Ag\;(sphere)/{\gamma}-Al_2O_3$), respectively, whereas that obtained with the catalyst-alone was considerably lower (about 30%) even with $Ag\;(nanowire)/{\gamma}-Al_2O_3$ under the same condition. The enhanced catalytic activity towards $NO_x$ conversion in the presence of plasma can be explained by the formation of more reactive $NO_2$ species and partially oxidized hydrocarbon intermediates from the oxidation of NO and n-heptane under plasma discharge. Increasing the SIE tended to improve $NO_x$ conversion efficiency, and so did the increase in the n-heptane concentration; however, a further increase in the n-heptane concentration beyond $C_1/NO_x$ ratio of 5 did not improve the $NO_x$ conversion efficiency any more. The increase in the humidity affected negatively the $NO_x$ conversion efficiency, resulting in lowering the $NO_x$ conversion efficiency at the higher water vapor content, because water molecules competed with $NO_x$ species for the same active site. The $NO_x$ conversion efficiency increased with increasing the oxygen content from 3 to 15%, in particular at low SIE values, because the formation of $NO_2$ and partially oxidized hydrocarbon intermediates was facilitated.
Keywords
nitrogen oxides; hydrocarbon selective catalytic reduction; plasma;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Lee, J. Park, S. Kim, S. Yoo, and J. Kim, Kinetics of hydrogen rich ethanol as reductant for HC-SCR over $Al_2O_3$ supported Ag catalyst, Trans. Korean Hydrogen and New Energy Society, 21, 519-525 (2010).
2 M. Kim and C. Lee, A study of hydrocarbon SCR (Selective Catalytic Reduction) on Ag/$\gamma$-$Al_2O_3$ catalyst, Analyt. Sci. Technol., 18, 139-146 (2005).
3 S. S. Kim, D. H. Jang, and S. C. Hong, A study of the reaction characteristics on hydrocarbon selective catalytic reduction of $NO_x$ over various noble metal catalysts, Clean technol., 17, 225-230 (2011).
4 Y. S. Mok, V. Ravi, H. C. Kang, and B. S. Rajanikanth, Abatement of nitrogen oxides in a catalytic reactor enhanced by nonthermal plasma discharge, IEEE Trans. Plasma Sci., 31, 157-165 (2003).   DOI
5 W. Sun, Q. Wang, S. Ding, S. Su, W. Jiang, and E. Zhu, Reaction mechanism of $NO_x$ removal from flue gas with pyrolusite slurry, Sep. Purif. Technol., 118, 576-582 (2013).   DOI
6 J. O. Lee and Y. H. Song, Characteristics of low temperature De-$NO_x$ process with non-thermal plasma and $NH_3$ selective catalytic reduction (I), J. Korean Ind. Eng. Chem., 17, 409-413 (2006).
7 D. Y. Yoon, J. H. Park, H. C. Kang, P. S. Kim, I. S. Nam, G. K. Yeo, J. K. Kil, and M. S. Cha, $DeNO_x$ performance of Ag/$Al_2O_3$ catalyst by n-dodecane: Effect of calcination temperature, Appl. Catal. B Environ., 101, 275-282 (2011).   DOI
8 D. Worch, W. Suprun, and R. Glaser, Supported transition metal- oxide catalysts for HC-SCR $DeNO_x$ with propene, Catal. Today, 176, 309-313 (2011).   DOI
9 A. Gervasini, P. Carniti, and V. Ragaini, Studies of direct decomposition and reduction of nitrogen oxide with ethylene by supported noble metal catalysts, Appl. Catal. B Environ., 22, 201-213 (1999).   DOI
10 Y. Nie, J. Wang, K. Zhong, L. Wang, and Z. Guan, Synergy study for plasma-facilitated $C_2H_4$ selective catalytic reduction of $NO_x$ over Ag/$\gamma$-$Al_2O_3$ catalyst, IEEE Trans. Plasma Sci., 35, 663-669 (2007).   DOI
11 B. Meng, Z. Zhao, X. Wang, J. Liang, and J. Qiu, Selective catalytic reduction of nitrogen oxides by ammonia over $Co_3O_4$ nanocrystals with different shapes, Appl. Catal. B Environ., 129, 491-500 (2013).   DOI
12 T. -H. Ihm, J. -O. Jo, Y. J. Hyun, and Y. S. Mok, Size and shape effect of metal oxides on hydrocarbon selective catalytic reduction of nitrogen oxides, J. Korean Inst. Gas, 19, 20-28 (2015).
13 H. Miessner, K. Francke, and R. Rudolph, Plasma-enhanced HC-SCR of $NO_x$ in the presence of excess oxygen, Appl. Catal. B Environ., 36, 53-62 (2002).   DOI
14 R. G. Tonkyn, S. E. Barlowa, and J. W. Hoard, Reduction of $NO_x$ in synthetic diesel exhaust via two-step plasma-catalysis treatment, Appl. Catal. B Environ., 40, 207-217 (2003).   DOI
15 K. G. Rappe, J. W. Hoard, C. L. Aardahl, P. W. Park, C. H. F. Peden, and D. N. Tran, Combination of low and high temperature catalytic materials to obtain broad temperature coverage for plasma- facilitated $NO_x$ reduction, Catal. Today, 89, 143-150 (2004).   DOI
16 H. Y. Fan, C. Shi, X. S. Li, X. F. Yang, Y. Xu, and A. M. Zhu, Low-temperature $NO_x$ selective reduction by hydrocarbons on H-Mordenite catalysts in dielectric barrier discharge plasma, Plasma Chem. Plasma Proc., 29, 43-53 (2009).   DOI
17 T. Furusawa, K. Seshan, J. A. Lercher, L. Lefferts, and K. Aika, Selective reduction of NO to N2 in the presence of oxygen over supported silver catalysts, Appl. Catal. B Environ., 37, 205-216 (2002).   DOI
18 H. -E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, The barrier discharge: Basic properties and applications to surface treatment, Vacuum, 71, 417-436 (2003).   DOI
19 H. He, Y. Li, X. Zhang, Y. Yu, and C. Zhang, Precipitable silver compound catalysts for the selective catalytic reduction of $NO_x$ by ethanol, Appl. Catal. A General, 375, 258-264 (2010).   DOI
20 K. Shimizu, A. Satsuma1, and T. Hattori, Catalytic performance of Ag-$Al_2O_3$ catalyst for the selective catalytic reduction of NO by higher hydrocarbons, Appl. Catal. B Environ., 25, 239-247 (2000).   DOI
21 M. S. P. Sudhakaran, J. O. Jo, Q. H. Trinh, and Y. S. Mok, Characteristics of packed-bed plasma reactor with dielectric barrier discharge for treating ethylene, Appl. Chem. Eng., 26, 495-504 (2015).   DOI
22 S. W. T. Sitshebo, HC-SCR of $NO_x$ Emissions Over Ag-$Al_2O_3$ Catalysts Using Diesel Fuel as a Reductant, PhD Dissertation, The University of Birmingham, Birmingham, United Kingdom (2010).
23 R. Dorai and M. J. Kushner, Effect of multiple pulses on the plasma chemistry during the remediation of $NO_x$ using dielectric barrier discharges, J. Phys. D: Appl. Phys., 34, 574-583 (2001).   DOI
24 B. S. Rajanikanth and A. D. Srinivasan, Pulsed plasma promoted adsorption/catalysis for $NO_x$ removal from stationary diesel engine exhaust, IEEE Trans. Dielectr. Electr. Insul., 14, 302-311 (2007).   DOI
25 Y. Pei, X. Chen, D. Xiong, S. Liao, and G. Wang, Removal and recovery of toxic silver ion using deep-sea bacterial generated biogenic manganese oxides, PLoS One, 8, e81627 (2013).   DOI
26 W. G. Mallard, F. Westley, J. T. Herron, and R. Hampso, NIST Chemical Kinetics Database: Version 2Q98. Gaithersburg, MD, USA (1998).
27 X. Tang, F. Feng, L. Ye, X. Zhang, Y. Huang, Z. Liu, and K. Yan, Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts, Catal. Today, 211, 39-43 (2013).   DOI
28 L. Jiang, R. Zhu, Y. Mao, J. Chen, and L. Zhang, Conversion characteristics and production evaluation of styrene/o-xylene mixtures removed by DBD pretreatment, Int. J. Environ. Res. Public Health, 12, 1334-1350 (2015).   DOI