Browse > Article

Effect of Initial Toluene Concentration on the Photooxidation of Toluene -NOx- Air Mixture - I. Change of Gaseous Species  

Lee Young-Mee (한국과학기술연구원 대기자원센터)
Bae Gwi-Nam (한국과학기술연구원 대기자원센터)
Lee Seung-Bok (한국과학기술연구원 대기자원센터)
Kim Min-Cheol (한국과학기술연구원 대기자원센터)
Moon Kil-Choo (한국과학기술연구원 대기자원센터)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.21, no.1, 2005 , pp. 15-26 More about this Journal
Abstract
An experimental investigation of the gas-phase photooxidation of toluene-NO$_{x}$-air mixtures at sub-ppm concentrations has been carried out in a 6.9 m3, indoor smog chamber irradiated by blacklights. Measured parameters in the toluene-NO$_{x}$ experiments included $O_3$, NO, NO$_2$, NO$_{x}$, CO, SO$_2$ toluene, and air temperature. The initial toluene concentration ranged from 225 ppb to 991 ppb and the initial concentration ratio of toluene/NO$_{x}$ in ppbC/ppb was in the range of 5~20. It was found that the variation of gaseous species with irradiation time caused by the photooxidation of toluene-NO$_{x}$-air mixtures depended on the initial toluene concentration for similar concentration ratio of toluene/NO$_{x}$. The dependency of initial toluene concentration on the photooxidation of toluene-NO$_{x}$-air mixtures for toluene/NO$_{x}$=5~6 seemed to be opposite to that for toluene/NO$_{x}$=10~11. The arriving time at maximum ozone concentration depended on both initial toluene concentration and initial concentration ratio of toluene/NO$_{x}$. However, the maximum concentration of ozone formed by photooxidation depended only on the initial toluene concentration.luene concentration.
Keywords
Photooxidation; Toluene; $-NO_{x}-$; Ozone; Smog chamber;
Citations & Related Records
연도 인용수 순위
  • Reference
1 문길주 등(2004) 스모그 챔버를 이용한 스모그 생성 메커니즘 규명. 한국과학기술연구원 보고서, M1-0204-00-0049 (UCN2595-7550-9)
2 Atkinson, R. (2000) Atmospheric chemistry of VOCs and $NO_{x}$ Atmospheric Environment, 34, 2063-2101
3 Izumi, K. and T. Fukuyama (1990) Photochemical aerosol formation from aromatic hydrocarbons in the presence of $NO_{x}$, Atmospheric Environment, 24A(6), 1433-1441
4 Jang, M. and R.M. Kamens (2001) Characterization of secondary aerosol from the photooxidation of toluene in the presence of $NO_{x}$ and I-propene, Environ. Sci. and Technol., 35, 3626-3639   DOI   ScienceOn
5 Killus, J.P. and G.Z. Whitten (1982) A mechanism describing the photochemical oxidation of toluene in smog, Atmospheric Environment, 16(8), 1973-1988   DOI   ScienceOn
6 Leone, J.A., R.C. Flagan, D. Grosjean, and J.H. Seinfeld (1985) An outdoor smog chamber and modeling study of toluene-$NO_{x}$ photooxidation, Int. J. of Chemical Kinetics, 17, 177-216   DOI
7 Odum, J.R., T.P.W. Junkamp, R.J. Griffin, H.J.L. Forstner, R.C. Flagan, and J.H. Seinfeld (1997) Aromatics, reformulated gasoline, and atmospheric organic aerosol formation, Environ. Sci. and Technol., 31, 1890-1897   DOI   ScienceOn
8 Seinfeld, J.H. and S.N. Pandis (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, Inc., pp.235-313
9 Carter, W.P.L., A.M. Winer, and J.N. Pitts (1981) Major atmospheric sink for phenol and the cresols. Reaction with the nitrate radical, Environ. Sci. and Technol., 15, 829-831   DOI   ScienceOn
10 Makert, F. and P. Pagsberg (1993) UV spectra and kinetics of radicals produced in the gas phase reactions of CI, F and OH with toluene, Chemical Physics Letters, 209, 445-454   DOI   ScienceOn
11 Na, K.S. and Y. Kim (2001) Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea, Atmospheric Environment, 35, 2603-2614   DOI   ScienceOn
12 Grosjean, D. (1985) Wall loss of gaseous pollutants in outdoor teflon chambers, Environ. Sci. and Technol., 19, 1059-1065   DOI   ScienceOn
13 배귀남, 김민철, 이승복, 송기범, 진현철, 문길주(2003) 실내 스모그 챔버의 설계 및 성능평가, 한국대기환경학회지, 19(4), 437-449
14 이영미, 배귀남, 이승복, 김민철, 문길주 (2005) 초기 톨루엔 농도가 톨루엔-$NO_{x}$ -공기 혼합물의 광산화 반응에 미치는 영향- II. 입자상 물질의 생성 및 성장, 한국대기환경학회지, 21(1), 27-38
15 Tuazon, E.C., H.M. Leod, R. Atkinson, and W.P.L. Carter (1986) $\alpha$-dicarbonyl yields from the $NO_{x}$-air photooxidations of a series of aromatic hydrocarbons in air, Environ. Sci. and Technol., 20(4), 383-387   DOI   ScienceOn
16 Forstner, H.J., R.C. Flagan, and J.H. Seinfeld (1997) Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition, Environ. Sci. and Technol., 31, 1345-1358   DOI   ScienceOn
17 박주연, 김용표 (2002) 서울시에서의 최적 오존 저감 대책: OZIPR을 이용한 사례 연구, 한국대기환경학회지, 18(5),427-433
18 Besemer, A.C. (1982) Formation of chemical compounds from irradiated mixtures of aromatic hydrocarbons and nitrogen oxides, Atmospheric Environment, 16(6), 1599-1602   DOI   ScienceOn
19 Jeffries, H.E. (1995) Composition Chemistry, and Climate of the Atmosphere, Van Nostrand Reinhold
20 Dodge, M.C. (2000) Chemical oxidant mechanisms for air quality modeling: Critical review, Environ. Sci. and Technol., 34, 2103-2130
21 Hurley, M.D., O. Sokolov, T.J. Wallington, H. Takekawa, M. Karasawa, B. Klotz, I. Barnes, and K.H. Becker (2001) Organic aerosol formation during the atmospheric degradation of toluene, Environ. Sci. and Technol., 35(7), 1358-1366   DOI   ScienceOn
22 Atkinson, R. (1994) Gas-phase tropospheric chemistry of organic compounds, J. of Physical and Chemical Reference Data, Monograph, 2, 1-216