• Title/Summary/Keyword: NO sensor

Search Result 1,277, Processing Time 0.023 seconds

Synthesis of Au@TiO2 Core-shell Nanoparticle-decorated rGO Nanocomposite and its NO2 Sensing Properties

  • Kumar Naik, Gautam;Yu, Yeon Tae
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.225-230
    • /
    • 2019
  • $Au@TiO_2$ core-shell decorated rGO nanocomposite (NC) was prepared using a simple solvothermal method followed by heat treatment for gas sensor application. The crystal structure and morphology of the composites were characterized by X-ray powder diffraction and transmission electron microscopy, respectively. The $NO_2$ sensing response of the $Au@TiO_2/rGO$ NC was tested at operating temperatures from $250^{\circ}C$ to $500^{\circ}C$, and was compared with those of the bare rGO and $Au@TiO_2$ core-shell NPs. The $Au@TiO_2/rGO$ NC-based sensor showed a far higher response than the rGO or $Au@TiO_2$ core-shell based sensors, with the maximum response detected when the operating temperature was $400^{\circ}C$. This improved response was due to the high rGO gas absorption capability for $NO_2$ gas and the catalytic effect of $Au@TiO_2$ core-shell NPs in oxidizing $NO_2$ to $NO_3$.

Ag-functionalized SnO2 Nanowires Based Sensor for NO2 Detection at Low Operating Temperature (NO2 감응을 위한 Ag 금속입자가 기능화된 SnO2 나노선 기반 저온동작 센서)

  • Choi, Myung Sik;Kim, Min Young;Ahn, Jihye;Choi, Seung Joon;Lee, Kyu Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.11-17
    • /
    • 2020
  • In this study, Ag-functionalized SnO2 nanowires are presented for NO2 gas sensitive sensors at low temperatures (50℃). SnO2 nanowires were synthesized using vapor-liquid-solid method, and Ag metal particles were functionalized on the surface of SnO2 nanowires using flame chemical vapor deposition method. As a result of the sensing test about Ag-functionalized SnO2 nanowires based sensor, the response (Rg/Ra) to 10 ppm NO2 was 1.252 at 50℃. We believe that metal-functionalizing is a one of good way to increase the feasibility about semiconductor gas sensor.

A Force/Moment Direction Sensor and Its Application in Intuitive Robot Teaching Task

  • Park, Myoung-Hwan;Kim, Sung-Joo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.236-241
    • /
    • 2001
  • Teach pendant is the most widely used means of robot teaching at present. Despite the difficulties of using the motion command buttons on the teach pendant, it is an economical, robust, and effective device for robot teaching task. This paper presents the development of a force/moment direction sensor named COSMO that can improve the teach pendant based robot teaching. Robot teaching experiment of a six axis commercial robot using the sensor is described where operator holds the sensor with a hand, and move the robot by pushing, pulling, and twisting the sensor in the direction of the desired motion. No prior knowledge of the coordinate system is required. The function of the COSMO sensor is to detect the presence f force and moment along the principal axes of the sensor coordinate system. The transducer used in the sensor is micro-switch, and this intuitive robot teaching can be implemented at a very low cost.

  • PDF

Probabilistic Support Vector Machine Localization in Wireless Sensor Networks

  • Samadian, Reza;Noorhosseini, Seyed Majid
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.924-934
    • /
    • 2011
  • Sensor networks play an important role in making the dream of ubiquitous computing a reality. With a variety of applications, sensor networks have the potential to influence everyone's life in the near future. However, there are a number of issues in deployment and exploitation of these networks that must be dealt with for sensor network applications to realize such potential. Localization of the sensor nodes, which is the subject of this paper, is one of the basic problems that must be solved for sensor networks to be effectively used. This paper proposes a probabilistic support vector machine (SVM)-based method to gain a fairly accurate localization of sensor nodes. As opposed to many existing methods, our method assumes almost no extra equipment on the sensor nodes. Our experiments demonstrate that the probabilistic SVM method (PSVM) provides a significant improvement over existing localization methods, particularly in sparse networks and rough environments. In addition, a post processing step for PSVM, called attractive/repulsive potential field localization, is proposed, which provides even more improvement on the accuracy of the sensor node locations.

$NO_2$ Gas Sensor Utilizing Pt-$WO_3-Si_3N_4-SiO_2$-Si-Al Capacitor (Pt-$WO_3-Si_3N_4-SiO_2$-Si-Al 캐패시터를 이용한 $NO_2$ 가스 센서)

  • 김창교;이주헌;이영환;유광수;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.105-108
    • /
    • 1998
  • Pt-WO$_3$-Si$_3$N$_4$-SiO$_2$-Si-Al 캐패시터를 이용한 NO$_2$ 가스 센서를 개발하였다. 표준 실리콘 MNOS구조에 촉매 게이트로 Pt와 가스 흡착층으로 WO$_3$를 이용함으로서 전통적인 세라믹 가스 센서보다 낮은 온도에서 NO$_2$ 가스를 감지할 수 있었다. 은도 변화와 NO$_2$ 가스 농도의 변화에 따라서 디바이스의 NO$_2$ 가스 감도를 조사하였다. Pt-WO$_3$ 계면에서 NO$_2$ 이온농도의 변화에 기초로 한 가스 감지 모델을 제시하였다. 제시된 가스 감지 모델을 계면에서의 가스 반응 속도론에 의하여 분석함으로서 확인하였다.

  • PDF

Gassensing characteristics of carbon nanotube gas sensor using a diaphragm structure (다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 가스감응특성)

  • Kim, Sung-Woon;Han, Chun-Jae;Cho, Woo-Sung;Ju, Byeong-Kwon;Cho, Hyun-Seob;Kim, Young-Cho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.203-206
    • /
    • 2006
  • The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_2$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

  • PDF

Potentiometric NOx sensors for automotive exhaust using YSZ(yittria stabilized zirconia) electrolyte (YSZ 전해질을 이용한 농담전지식 자동차용 NOx센서)

  • Park, Jin-Su;Park, Kwang-Chol;Park, C.O.
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.434-440
    • /
    • 2007
  • Two kinds of new NOx sensing mechanism was proposed and examined. One of those was potentiomtric sensor based on the measurement of decomposed oxygen from NO using YSZ porous diffusion barrier and Pd catalytic electrode. The sensor based on decomposed oxygen measurement responded to the range of 300 - 1000 ppm NO in $N_{2}$ environment and the sensitivities were coincident with theoretical values at 700 and $800^{\circ}C$ but the decomposition rate depended on gas flow rate. The other sensor was equilibrium potentiometric type using $Gd_{2}O_{3}$-nitrates solid solution as sensing material. The sensor using $Gd_{2}O_{3}$-nitrates solid solution was suitable for NOxxsensing at $700^{\circ}C$ in 5 % oxygen and the sensitivity was 19.3 mV/decade. However, long term stability of the sensing material at high temperature was not sufficient.

Fabrication of low power NO micro gas senor by using CMOS compatible process (CMOS공정 기반의 저전력 NO 마이크로가스센서의 제작)

  • Shin, Han-Jae;Song, Kap-Duk;Lee, Hong-Jin;Hong, Young-Ho;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Low power bridge type micro gas sensors were fabricated by micro machining technology with TMAH (Tetra Methyl Ammonium Hydroxide) solution. The sensing devices with different heater materials such as metal and poly-silicon were obtained using CMOS (Complementary Metal Oxide Semiconductor) compatible process. The tellurium films as a sensing layer were deposited on the micro machined substrate using shadow silicon mask. The low power micro gas sensors showed high sensitivity to NO with high speed. The pure tellurium film used micro gas sensor showed good sensitivity than transition metal (Pt, Ti) used tellurium film.

The Performance Analysis of the Parameter Extracting Technique for the Vibration Monitoring System in High Voltage Motor (고압전동기용 진동 감시 시스템의 계수 추출기법 성능 분석)

  • Park, Jung-Cheul;Lee, Dal-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.529-536
    • /
    • 2019
  • In this paper, the signals of the sensor for extracting characteristic parameters of the rotor are collected and the performance of the extraction technique is analyzed. To this end, a vibration test league was developed for conducting model tests to analyze the signal characteristics under normal operation. As a result, it is judged that no change in the measured the raw data amplitude will occur in the acceleration sensor with the unbalanced mass measured from the acceleration sensor. Performing FFT showed a significant increase in amplitude of the rotational frequency of 20 Hz as the unbalanced mass increased. The analysis results according to the change in the unequal mass of the speed sensor also showed a significant increase in the 1X Harmonics component, such as the acceleration sensor. There was no change in the amplitude of the acceleration sensor data when the misalignment occurred, and for the Envelope data, the amplitude of 2X (40 Hz) was increased depending on the degree of misalignment. The velocity sensor at change of misalignment also showed similar results to the acceleration sensor, and the peak was reduced at 600 Hz as the load increased in the frequency spectrum.

The Design of a Ultra-Low Power RF Wakeup Sensor for Wireless Sensor Networks

  • Lee, Sang Hoon;Bae, Yong Soo;Choi, Lynn
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.201-209
    • /
    • 2016
  • In wireless sensor networks (WSNs) duty cycling has been an imperative choice to reduce idle listening but it introduces sleep delay. Thus, the conventional WSN medium access control protocols are bound by the energy-latency tradeoff. To break through the tradeoff, we propose a radio wave sensor called radio frequency (RF) wakeup sensor that is dedicated to sense the presence of a RF signal. The distinctive feature of our design is that the RF wakeup sensor can provide the same sensitivity but with two orders of magnitude less energy than the underlying RF module. With RF wakeup sensor a sensor node no longer requires duty cycling. Instead, it can maintain a sleep state until its RF wakeup sensor detects a communication signal. According to our analysis, the response time of the RF wakeup sensor is much shorter than the minimum transmission time of a typical communication module. Therefore, we apply duty cycling to the RF wakeup sensor to further reduce the energy consumption without performance degradation. We evaluate the circuital characteristics of our RF wakeup sensor design by using Advanced Design System 2009 simulator. The results show that RF wakeup sensor allows a sensor node to completely turn off their communication module by performing the around-the-clock carrier sensing while it consumes only 0.07% energy of an idle communication module.