• Title/Summary/Keyword: NKN

Search Result 77, Processing Time 0.024 seconds

Electrical properties of (Na0.5K0.5)NbO3-BiTiO3 ceramics with the variation of sintering temperature

  • Lee, Tae-Ho;Lee, Sung-Gap
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.174-176
    • /
    • 2012
  • Piezoelectric 0.93(Na0.5K0.5)NbO3-0.07BiTiO3 (NKN-BTO) ceramics were fabricated by the mixed-oxide method and their structural and dielectric properties was investigated with the variation of sintering temperature. All specimens were crystallized in the perovskite single phase without any formation of a second phase such as pyrochlore. The average grain size of the NKN-BTO specimen sintered at 1130 ℃ is 0.32 ㎛. The specimen sintered at 1100 ℃ showed the highest relative density of 98%. Electromechanical coupling factor, relative dielectric constant and dielectric loss of the NKN-BTO specimens sintered at 1110 ℃ were 0.31, 1222 and 0.02, respectively. Curie temperature of the specimen sintered at 1110 ℃ was 445 ℃.

Electrical and Structural Properties of Lead Free 0.98 (Na0.44K0.52)Nb0.84O3-0.02Li0.04 (Sb0.06Ta0.1)O3-0.5 mol%CuO Ceramics (비납계 0.98 (Na0.44K0.52)Nb0.84O3-0.02Li0.04 (Sb0.06Ta0.1)O3-0.5 mol%CuO 세라믹스의 전기적, 구조적 특성)

  • Lee, Seung-Hwan;Nam, Sung-Pill;Lee, Sung-Gap;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.116-120
    • /
    • 2011
  • The 0.98 ($Na_{0.44}K_{0.52})Nb_{0.84}O_3-0.02Li_{0.04}$ ($Sb_{0.06}Ta_{0.1})O_3-0.5$ mol%CuO ceramics have been fabircated by ordinary sintering technique and the effect of various calcination method on the electrical propertis and microstructure have been studied. It was observed that the various calcination method influenced the elelctrical properties and structural properties of the 0.98NKN-0.02LST-0.5 mol%CuO ceramics with the optimum piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) at room temperature of about $155{\rho}C/N$ and 0.349, respectively, from 0.98NKN-0.02LST-0.5 mol%CuO ceramics sample. The curie temperature ($T_c$) of this ceramic was found at $440^{\circ}C$. The 0.98NKN-0.02LST-0.5 mol%CuO ceramics are a promising lead-free piezoelectric ceramics.

Piezoelectric Properties of 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3+0.01wt%ZnO Ceramics with a Sintering Temperature (소결 온도에 따른 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3+0.01wt%ZnO 세라믹스의 압전 특성)

  • Lee, Dong-Hyun;Lee, Seung-Hwan;Lee, Sung-Gap;Lee, Ku-Tak;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.543-546
    • /
    • 2011
  • We studied sintering temperature to enhance the piezoelectric properties of $0.98(Na_{0.5}K_{0.5})NbO_3-0.02Li(Sb_{0.17}Ta_{0.83})O_3$+0.01wt%ZnO (hereafter NKN-LST+ZnO) lead free piezoelectric ceramics. The synthesis and sintering method were the conventional solid state reaction method and sintering was executed at $1,080\sim1,120^{\circ}C$. We found that NKN-LST+ZnO ceramics at optimal sintering temperature showed the improved piezoelectric properties at the optimal sintering temperature. The NKN-LST+ZnO ceramics show good performance with piezoelectric constant $d_{33}$= 153 pC/N sintered at $1,090^{\circ}C$. The results reveal that NKN-LST+ZnO ceramics are promising candidate materials for lead-free piezoelectric application.

Effect of MnO2 Addition on Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 Piezoelectric Ceramics

  • Kim, Jong-Hyun;Seo, In-Tae;Hur, Joon;Kim, Dae-Hyeon;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.129-133
    • /
    • 2016
  • $MnO_2$ was added to the $0.95(Na_{0.5}K_{0.5})NbO_3-0.05CaTiO_3$ (NKN-CT) ceramics in order to promote the densification and improve the poling efficiency by increasing the resistance of the specimens. Densification and abnormal grain growth occurred in the $MnO_2$-added NKN-CT ceramics sintered at $1020^{\circ}C$, indicating that $MnO_2$ assisted the liquid-phase sintering of these materials. $Mn^{3+}$ ions were considered to enter the A-site of the matrix, thereby producing the free electrons, which interacted with the holes resulting from the evaporation of alkali ions. This interaction results in an increase in the resistance of the specimens. The increased resistance improved the poling efficiency and, hence, the dielectric and piezoelectric properties of the NKN-CT ceramics. A few of the $Mn^{3+}$ ions that entered the B-site of the NKN-CT matrix led to a slight increase in the mechanical quality factor.

The Piezoelectric Properties of (Na0.5K0.5)NbO3-K4CuNb8O23 Ceramics with Various K4CuNb8O23 Doping and Sintering Temperatures

  • Yoon, Jung-Rag;Lee, Chang-Bae;Lee, Kyung-Min;Lee, Heun-Young;Lee, Serk-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.126-129
    • /
    • 2010
  • (1-X) $(Na_{0.5}K_{0.5})NbO_3-X$ $K_4CuNb_8O_{23}$ (NKN-X KCN) ceramics were produced using the conventional solid state sintering method, and their sinterability and electric properties were investigated. The density, dielectric constant (${\varepsilon}_r$), piezoelectric constant $d_{33}$, electromechanical coupling factor $k_p$ and mechanical quality factor $Q_m$ value of the NKN ceramics depended upon the KCN content and the sintering temperature. In particular, the KCN addition to the NKN greatly improved the mechanical quality factor $Q_m$ value. The ceramic with X = 2.0 mol% sintered at $1,150^{\circ}C$ possesses the optimum properties (${\varepsilon}_r=241$, $d_{33}=78$, $k_p=0.34$ and $Q_m=1,121$). These results indicate that the ceramic is a promising candidate material for applications in lead free piezoelectric transformer and filter materials.

Dielectric and Piezoelectric Characteristics of 0.94$(K_{0.5}Na_{0.5})NbO_3$-0.06Ba$(Zr_{0.05}Ti_{0.95})O_3$ Ceramics System According to the variations of sintering aids (소결조재 변화에 따른 0.94$(K_{0.5}Na_{0.5})NbO_3$-0.06Ba$(Zr_{0.05}Ti_{0.95})O_3$ 세라믹스의 유전 및 압전특성)

  • Seo, Byeong-Ho;Kim, Do-Hyung;Lee, Yu-Hyong;Yoo, Ju-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.205-205
    • /
    • 2008
  • PZT 세라믹은 우수한 유전 및 압전특성을 갖고 있어 변압기, 센서 및 엑츄에이터 등에 널리 응용되고 있다. 그러나, 우수한 특성에도 불구하고 PZT세라믹스의 소결시 PbO의 높은 유독성 및 휘발로 인하여 환경오염을 야기 시킨다. 그러므로 PbO로 구성된 세라믹을 대체하기 위한 우수한 압전특성을 가진 비납계 세라믹스 개발이 연구의 주류를 이루고 있다. 그 중 비납계 NKN와 BZT는 대체물질로 많이 관심을 받고 있다. 이는 일반적인 NKN조성은 우수한 압전성과 높은 큐리온도를 가지고 있을 뿐만 아니라, BZT조성의 Zr성분이 큐리온도를 낮추거나 유전특성을 졸게 하여 유전율 곡선을 완화하게 하는 특징이 있다. 하지만 NKN은 $1140^{\circ}C$이상의 소결온도에서 K의 휘발특성으로 인해 소성 후에도 주변의 수분을 흡수하는 조해성이 발생하는 문제가 발생한다. 그래서 본 연구에서는 낮은 온도에서 NKN계 세라믹스의 밀도를 증가시킬 뿐만 아니라, 우수한 유전 및 압전특성을 갖는 세라믹스를 제조하고자 비납계 $0.94(K_{0.5}Na_{0.5})NbO_3-0.06Ba(Zr_{0.05}Ti_{0.95})O_3$ (NKN-BZT)의 조성을 사용하였고 소결조제로는 $MnO_2$, NiO, $Bi_2O_3$, ZnO, $Li_2CO_3$, CuO등을 변화주어 유전 및 압전 특성을 알아보았다.

  • PDF

Piezoelectric Properties of Ag2O-doped 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3 Ceramics (Ag2O 첨가에 따른 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3 세라믹스의 압전특성)

  • Kim, Hyun-Ju;Lee, Seung-Hwan;Lee, Sung-Gap;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.29-32
    • /
    • 2012
  • Lead-free $0.98(Na_{0.5},K_{0.5})NbO_3-0.02Li(Sb_{0.17}Ti_{0.83})O_3$ (hereafter 0.98NKN-0.02LST) ceramics doped with $Ag_2O$ were prepared using a conventional mixed oxide method. The specimen showed superior structural and electrical properties when 1 mol% $Ag_2O$ was doped. For the 0.98NKN-0.02LST+1.0mol%$Ag_2O$ ceramics sintered at $1,100^{\circ}C$, piezoelectric constant ($d_{33}$) of sample showed the optimum values of 207 pC/N. The 0.98NKN-0.02LST+1.0 mol%$Ag_2O$ ceramics are a promising candidate for lead-free piezoelectric materials.

The Piezoelectric Properties of (Na0.5K0.5)NbO3-K5.4Cu1.3Ta10O29 Ceramics with Various K5.4Cu1.3Ta10O29 Doping and Sintering Temperatures

  • Yoon, Jung Rag;Lee, Chang-Bae;Lee, Serk Won;Lee, Heun-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.283-286
    • /
    • 2012
  • (1-X)$(Na_{0.5}K_{0.5})NbO_3-XK_{5.4}Cu_{1.3}Ta_{10}O_{29}$ (NKN-KCT) lead-free piezoelectric ceramics have been synthesized by the conventional solid state sintering method, and their sinterability and piezoelectric properties were investigated. Typically, this material is sintered between 1,025 and $1,100^{\circ}C$ for 2 hours to achieve the required densification. Crystalline structures and Microstructures were analyzed by X-ray diffraction and scanning electron microscope. The density, dielectric constant (${\varepsilon}_r$), piezoelectric constant $d_{33}$, electromechanical coupling factor $k_p$ and mechanical quality factor $Q_m$ value of the NKN ceramics depended upon the KCT content and the sintering temperature. In particular, the KCT addition to NKN greatly improved the mechanical quality factor $Q_m$ value. The ceramic with X = 1.0 mol% sintered at $1,050^{\circ}C$ exhibited optimum properties (${\varepsilon}_r$=246, $d_{33}$=95, $k_p$=0.38 and $Q_m$=1,826). These results indicate that the ceramic is a promising candidate material for applications in lead free piezoelectric transformer and filter materials.

Piezoelectric Properties of lead free (Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3 Ceramics with ZnO Addition (ZnO 첨가량에 따른 비납계 (Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3 세라믹스의 압전 특성)

  • Lee, Dong-Hyun;Lee, Seung-Hwan;Nam, Sun-Pill;Lee, Young-Hie
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2021-2025
    • /
    • 2010
  • Electrical and structural properties were investigated on the effects of ZnO and the lead-free NKN-LST ceramics with the addition of ZnO were fabricated by a conventional mixed oxide method. A gradual change in the crystal and microstructure was observed with the increase of ZnO addition. For the NKN-LST-ZnO ceramics sintered at $1050^{\circ}C$, bulk density increased with the addition of ZnO and showed maximum value at addition 2.0mol% of ZnO. Curie temperature of the NKN-LST-ZnO ceramics slightly decreased with adding ZnO. The dielectric constant, piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) increased at the small amount of ZnO addition, which might be due to the increase in density. The high piezoelectric properties = 153 pC/N, electromechanical coupling factor = 0.484 and dielectric constant = 2883 were obtained for the NKN-LST+0.5ZnO ceramics sintered at $1050^{\circ}C$ for 2h.

Electrical Properties of lead free (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics with MnO2 Addition (MnO2 첨가량에 따른 비납계 (Na,K,Li)(Nb,Sb,Ta)O3 세라믹스의 전기적특성)

  • Lee, Seung-Hwan;Nam, Sung-Pill;Lee, Dong-Hyun;Lee, Sung-Gap;Lee, Sang-Chul;Lee, Young-Hie
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.801-804
    • /
    • 2011
  • Electrical properties and microstructure were investigated on the effects of $MnO_2$ and the lead-free $(Na_{0.44}K_{0.52}Li_{0.04})(Nb_{0.83}Sb_{0.07}Ta_{0.1})O_3$ ceramics with the addition of $MnO_2$ were fabricated by a conventional mixed oxide method. A gradual change in the crystal and microstructure was observed with the increase of $MnO_2$ addition. For the NKN-LST-xmol%$MnO_2$ sintered at $1100^{\circ}C$, bulk density increased with the addition of $MnO_2$ and showed maximum value at addition 1.0mol% of $MnO_2$. Curie temperature of the NKN-LST ceramics slightly decreased with adding $MnO_2$. The dielectric constant, piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) increased below 0.25mol% of $MnO_2$ addition, which might be due to the increase in density. The high piezoelectric properties = 145 pC/N, electromechanical coupling factor = 0.421 and dielectric constant = 2883 were obtained for the NKN-LST-0.25mol%$MnO_2$ sintered at $1100^{\circ}C$ for 4h.