Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.2.116

Electrical and Structural Properties of Lead Free 0.98 (Na0.44K0.52)Nb0.84O3-0.02Li0.04 (Sb0.06Ta0.1)O3-0.5 mol%CuO Ceramics  

Lee, Seung-Hwan (Department of Electronics Materials Engineering, Kwangwoon University)
Nam, Sung-Pill (Department of Ceramic Engineering, Eng. Res. Insti., Gyeongsang National University)
Lee, Sung-Gap (Department of Ceramic Engineering, Eng. Res. Insti., Gyeongsang National University)
Lee, Young-Hie (Department of Electronics Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.2, 2011 , pp. 116-120 More about this Journal
Abstract
The 0.98 ($Na_{0.44}K_{0.52})Nb_{0.84}O_3-0.02Li_{0.04}$ ($Sb_{0.06}Ta_{0.1})O_3-0.5$ mol%CuO ceramics have been fabircated by ordinary sintering technique and the effect of various calcination method on the electrical propertis and microstructure have been studied. It was observed that the various calcination method influenced the elelctrical properties and structural properties of the 0.98NKN-0.02LST-0.5 mol%CuO ceramics with the optimum piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) at room temperature of about $155{\rho}C/N$ and 0.349, respectively, from 0.98NKN-0.02LST-0.5 mol%CuO ceramics sample. The curie temperature ($T_c$) of this ceramic was found at $440^{\circ}C$. The 0.98NKN-0.02LST-0.5 mol%CuO ceramics are a promising lead-free piezoelectric ceramics.
Keywords
Piezoelectric properties; Lead-free; NKN-LST-CuO; Dielectric properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. H. Park, C. W Ahn, S. N. and J. S. Song, The japan Society of Applied Physics, 43, L1072 (2004).   DOI
2 Ruzhong Zuo, Jurgen Rodel Renzheng Cen, and Longtu Li, J. Am. Ceram. Soc., 89[6], 2010 (2006).   DOI
3 Bao-Quan Min, Jin-Feng Wang, Peng Qi, and Guo-Zhong Zang,, Journal of Applied Physics, 101, 054103 (2007).   DOI
4 Y. H. Kim, D. Y Heo, W. P. Tai, and J. S. Lee, Journal of the Korean Ceramic Society, 45, 6, 363 (2008).   DOI
5 S. J. Park, H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, D. H. Kim, and B. H. Choi, Materials Research Bulletin 42 3580 (2008).
6 C. W. Ahn, H. Y. Park, S. Nahm, K. Uchino, H. G. Lee, and H. J. Lee, Sensors and Actuators A, 136, 255 (2007).   DOI
7 Z. X. Chen, Y. Chen, and Y. S. Jiang, J. Phys. Chem. B, 106, 9986 (2002).   DOI
8 S. H. Moon, Y. S. Ham, Y. H. Lee, S. M. Nam, J. H. Koh, J. Korean Phys. Soc. 56, 1 399 (2010).   DOI   ScienceOn
9 Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett., 85[18] 4121 (2004).   DOI
10 R. J. Xie, Y. Akimune, R. Wang, N. Hirosaki, and T. Nishimuna, Jpn. J. Appl. Phys., 42[12] 7404 (2003).   DOI
11 C. Zaldo, D.S Gilld, R. W. Eason, J. Mendiola, and P. J. Chandler, Appl. Phys. Lett., 65[4] 502 (1994).   DOI
12 K. Yamanouchi, H. Odagawa, T. Kojima, and T. Matsumura, Electron. Lett., 33[3] 193 (1997).   DOI