Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.7.543

Piezoelectric Properties of 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3+0.01wt%ZnO Ceramics with a Sintering Temperature  

Lee, Dong-Hyun (Department of Electronic Materials Engineering, Kwangwoon University)
Lee, Seung-Hwan (Department of Electronic Materials Engineering, Kwangwoon University)
Lee, Sung-Gap (School of Nano and Advanced Materials Engineering, Gyeongsang National University)
Lee, Ku-Tak (Department of Electronic Materials Engineering, Kwangwoon University)
Lee, Young-Hie (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.7, 2011 , pp. 543-546 More about this Journal
Abstract
We studied sintering temperature to enhance the piezoelectric properties of $0.98(Na_{0.5}K_{0.5})NbO_3-0.02Li(Sb_{0.17}Ta_{0.83})O_3$+0.01wt%ZnO (hereafter NKN-LST+ZnO) lead free piezoelectric ceramics. The synthesis and sintering method were the conventional solid state reaction method and sintering was executed at $1,080\sim1,120^{\circ}C$. We found that NKN-LST+ZnO ceramics at optimal sintering temperature showed the improved piezoelectric properties at the optimal sintering temperature. The NKN-LST+ZnO ceramics show good performance with piezoelectric constant $d_{33}$= 153 pC/N sintered at $1,090^{\circ}C$. The results reveal that NKN-LST+ZnO ceramics are promising candidate materials for lead-free piezoelectric application.
Keywords
Sintering temperature; Piezoelectric properties; Lead free; Dielectric properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 B. Q. Min, J. F. Wang, P. Qi, and G. Z. Zang, J. Appl. Phys., 101, 054103 (2007).   DOI
2 Y. H. Kim, D. Y. Heo, W. P. Tai, and J. S. Lee, J. Korean Ceram. Soc., 45, 363 (2008).   DOI
3 S. J. Park, H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, D. H. Kim, and B. H. Choi, Mater. Res. Bull., 42, 3580 (2008).
4 C. W. Ahn, H. Y. Park, S. Nahm, K. Uchino, H. G. Lee, and H. J. Lee, Sensor. Actuat., A136, 255 (2007).   DOI
5 S. H. Moon, Y. S. Ham, Y. H. Lee, S. M. Nam, and J. H. Koh, J. Korean Phys. Soc., 56, 399 (2010).   DOI   ScienceOn
6 Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett., 85, 4121 (2004).   DOI
7 R. J. Xie, Y. Akimune, R.Wang, N. Hirosaki, and T. Nishimuna, Jpn. J. Appl. Phys., 42, 7404 (2003).   DOI
8 R. Zuo and J. Rodel, J. Am. Ceram. Soc., 89, 2010 (2006).   DOI
9 S. H. Park, C. W. Ahn, S. Nahm, and J. S. Song, Jpn. J. Appl. Phys., 43, 1072 (2004).   DOI
10 Z. X. Chen, Y. Chen, and Y. S. Jiang, J. Phys. Chem., B106, 9986 (2002).
11 Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004).   DOI