DOI QR코드

DOI QR Code

Piezoelectric Properties of 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3+0.01wt%ZnO Ceramics with a Sintering Temperature

소결 온도에 따른 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3+0.01wt%ZnO 세라믹스의 압전 특성

  • Lee, Dong-Hyun (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Lee, Seung-Hwan (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Lee, Sung-Gap (School of Nano and Advanced Materials Engineering, Gyeongsang National University) ;
  • Lee, Ku-Tak (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Lee, Young-Hie (Department of Electronic Materials Engineering, Kwangwoon University)
  • 이동현 (광운대학교 전자재료공학과) ;
  • 이승환 (광운대학교 전자재료공학과) ;
  • 이성갑 (경상대학교 세라믹공학과) ;
  • 이규탁 (광운대학교 전자재료공학과) ;
  • 이영희 (광운대학교 전자재료공학과)
  • Received : 2011.04.21
  • Accepted : 2011.06.14
  • Published : 2011.07.01

Abstract

We studied sintering temperature to enhance the piezoelectric properties of $0.98(Na_{0.5}K_{0.5})NbO_3-0.02Li(Sb_{0.17}Ta_{0.83})O_3$+0.01wt%ZnO (hereafter NKN-LST+ZnO) lead free piezoelectric ceramics. The synthesis and sintering method were the conventional solid state reaction method and sintering was executed at $1,080\sim1,120^{\circ}C$. We found that NKN-LST+ZnO ceramics at optimal sintering temperature showed the improved piezoelectric properties at the optimal sintering temperature. The NKN-LST+ZnO ceramics show good performance with piezoelectric constant $d_{33}$= 153 pC/N sintered at $1,090^{\circ}C$. The results reveal that NKN-LST+ZnO ceramics are promising candidate materials for lead-free piezoelectric application.

Keywords

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  2. R. Zuo and J. Rodel, J. Am. Ceram. Soc., 89, 2010 (2006). https://doi.org/10.1111/j.1551-2916.2006.00991.x
  3. S. H. Park, C. W. Ahn, S. Nahm, and J. S. Song, Jpn. J. Appl. Phys., 43, 1072 (2004). https://doi.org/10.1143/JJAP.43.L1072
  4. Z. X. Chen, Y. Chen, and Y. S. Jiang, J. Phys. Chem., B106, 9986 (2002).
  5. B. Q. Min, J. F. Wang, P. Qi, and G. Z. Zang, J. Appl. Phys., 101, 054103 (2007). https://doi.org/10.1063/1.2436923
  6. Y. H. Kim, D. Y. Heo, W. P. Tai, and J. S. Lee, J. Korean Ceram. Soc., 45, 363 (2008). https://doi.org/10.4191/KCERS.2008.45.6.363
  7. S. J. Park, H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, D. H. Kim, and B. H. Choi, Mater. Res. Bull., 42, 3580 (2008).
  8. C. W. Ahn, H. Y. Park, S. Nahm, K. Uchino, H. G. Lee, and H. J. Lee, Sensor. Actuat., A136, 255 (2007). https://doi.org/10.1016/j.sna.2006.10.036
  9. S. H. Moon, Y. S. Ham, Y. H. Lee, S. M. Nam, and J. H. Koh, J. Korean Phys. Soc., 56, 399 (2010). https://doi.org/10.3938/jkps.56.399
  10. Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett., 85, 4121 (2004). https://doi.org/10.1063/1.1813636
  11. R. J. Xie, Y. Akimune, R.Wang, N. Hirosaki, and T. Nishimuna, Jpn. J. Appl. Phys., 42, 7404 (2003). https://doi.org/10.1143/JJAP.42.7404

Cited by

  1. Effects of A-site Vacancies on the Piezoelectric Properties of 0.97Bi0.5+x(Na0.78K0.22)0.5-3xTiO3-0.03LaFeO3Lead-free Piezoelectric Ceramics vol.51, pp.6, 2014, https://doi.org/10.4191/kcers.2014.51.6.527