Browse > Article
http://dx.doi.org/10.4191/kcers.2016.53.2.129

Effect of MnO2 Addition on Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 Piezoelectric Ceramics  

Kim, Jong-Hyun (Department of Nano-Bio-Information-Technology, KU-KIST Graduate School of Converging Science and Technology)
Seo, In-Tae (Department of Materials Science and Engineering, Korea University)
Hur, Joon (Department of Nano-Bio-Information-Technology, KU-KIST Graduate School of Converging Science and Technology)
Kim, Dae-Hyeon (Department of Materials Science and Engineering, Korea University)
Nahm, Sahn (Department of Nano-Bio-Information-Technology, KU-KIST Graduate School of Converging Science and Technology)
Publication Information
Abstract
$MnO_2$ was added to the $0.95(Na_{0.5}K_{0.5})NbO_3-0.05CaTiO_3$ (NKN-CT) ceramics in order to promote the densification and improve the poling efficiency by increasing the resistance of the specimens. Densification and abnormal grain growth occurred in the $MnO_2$-added NKN-CT ceramics sintered at $1020^{\circ}C$, indicating that $MnO_2$ assisted the liquid-phase sintering of these materials. $Mn^{3+}$ ions were considered to enter the A-site of the matrix, thereby producing the free electrons, which interacted with the holes resulting from the evaporation of alkali ions. This interaction results in an increase in the resistance of the specimens. The increased resistance improved the poling efficiency and, hence, the dielectric and piezoelectric properties of the NKN-CT ceramics. A few of the $Mn^{3+}$ ions that entered the B-site of the NKN-CT matrix led to a slight increase in the mechanical quality factor.
Keywords
Ceramics; Sintering; Piezoelectricity; X-ray diffraction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics; pp.271, Academic, New York, 1971.
2 Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 84-7 (2004).   DOI
3 Y. Makiuchi, R. Aoyagi, Y. Hiruma, H. Nagata and T. Takenaka, "($Bi_{1/2}Na_{1/2}$)$TiO_3$-($Bi_{1/2}K_{1/2}$)$TiO_3$-$BaTiO_3$-Based Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 44 [6B] 4350-53 (2005).   DOI
4 J. F. Li, K. Wang, F. Y. Zhu, L. Q. Cheng, and F. Z. Yao, "(K,Na)$NbO_3$-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013).   DOI
5 J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009).   DOI
6 J. Fu, R. Zuo, X. Fang, and K. Liu, "Lead-Free Ceramics Based on Alkaline Niobate Tantalate Antimonate With Excellent Dielectric and Piezoelectric Properties," Mater. Res. Bull., 44 [5] 1188-90 (2009).   DOI
7 P. Jarupoom, K. Pengpat, S. Eitssayeam, U. Intatha, G. Rujijanagul, and T. Tunkasiri, "Structures and Properties of Lead-Free NKN Piezoelectric Ceramics," Ferrolectrics. Lett., 35 119-27 (2009).
8 L. Egerton and D. M. Dillon, "Piezoelectric and Dielectric Properties of Ceramics in the System Potassium-Sodium Niobate," J. Am. Ceram. Soc., 42 [9] 438-42 (1959).   DOI
9 H. J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, and M. Kuball, "Raman Spectroscopy of (K,Na)$NbO_3$ and $(K,Na)_{1-x}Li_xNbO_3$," Appl. Phys. Lett., 93 [26] 262901 (2008).   DOI
10 R. Zuo and J. Fu, "Rhombohedral-Tetragonal Phase Coexistence and Piezoelectric Properties of (Na,K)(Nb,Sb)$O_3$-$LiTaO_3$-$BaZrO_3$ Lead-Free Ceramics," J. Am. Ceram. Soc., 94 [5] 1467-70 (2011).   DOI
11 X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, and X. Wang, "Giant Piezoelectricity in Potassium-Sodium Niobate Lead-Free Ceramics," J. Am. Chem. Soc., 136 [7] 2905-10 (2014).   DOI
12 B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, and X. Lou, "Lead-Free Piezoelectrics Based on Potassium-Sodium Niobate with Giant $d_{33}$," ACS Appl. Mater. Interfaces., 5 [16] 7718-25 (2013).   DOI
13 H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, and D. H. Kim, "Microstructure and Piezoelectric Properties of Lead-Free (1-x)($Na_{0.5}K_{0.5}$)$NbO_3$-xCa$TiO_3$ Ceramics," J. Appl. Phys., 102 [12] 124101 (2007).   DOI
14 H. Y. Park, C. W. Ahn, H. C. Song, J. H. Lee, and S. Nahm, "Microstructure and Piezoelectric Properties of 0.95($Na_{0.5}K_{0.5}$)$NbO_3$-0.05$BaTiO_3$0.95($Na_{0.5}K_{0.5}$)$NbO_3$-0.05$BaTiO_3$ Ceramics," Appl. Phys. Lett., 89 [6] 062906 (2006).   DOI
15 S. J. Park, H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, D. H. Kim, and B. H. Choi, "Effect of CuO on the Sintering Temperature and Piezoelectric Properties of Lead-Free 0.95($K_{0.5}Na_{0.5}$)$NbO_3$-0.05Ca$TiO_3$ Ceramics," Mater. Res. Bull., 43 [12] 3580-86 (2008).   DOI
16 Murata Manufacturing Co., Ltd., "No. P19E-6," Murata Manufacturing Co., Ltd, Kyoto, 2005.
17 D. Lin, K.W. Kwok and H.L.W. Chan, "Effects of $MnO_2$ on the Microstructure and Electrical Properties of 0.94($K_{0.5}Na_{0.5}$)$NbO_3$-0.06Ba($Zr_{0.05}Ti_{0.95}$)$O_3$ Lead-Free Ceramics," Mater Chem Phys., 109 455-8 (2008).   DOI
18 H. C. Song, K. H. Cho, H. Y. Park, C. W. Ahn, S. Nahm, K. Uchino, and H. G. Lee, "Microstructure and Piezoelectric Properties of (1-x)($Na_{0.5}K_{0.5}$)$NbO_3$-xLi$NbO_3$ Ceramics," J. Am. Ceram. Soc., 90 [6] 1812-16 (2007).   DOI
19 S. Priya and S. Nahm, Lead-Free Piezoelectrics; Ch. 4, Springer, New York, 2012.
20 J. H. Ahn, J. H. Lee, S. H. Hong, N. M. Hwang and D. Y. Kim, "Effect of the Liquid-Forming Additive Content on the Kinetics of Abnormal Grain Growth in Alumina," J. Am. Ceram. Soc., 86 [8] 1421-23 (2003).   DOI