• 제목/요약/키워드: NH3 gas concentration

검색결과 230건 처리시간 0.025초

중공사막 접촉기를 이용한 암모니아 물질전달 모델링 (Modeling of Ammonia Mass Transfer Using a Hollow Fiber Membrane Contactor)

  • 오대양;정주영;최원호;박주양
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.503-510
    • /
    • 2011
  • Ammonia in water which is toxic to human, its concentration is regulated below 0.5 mg/L in drinking water. Current study aimed to develop appropriate models for ammonia stripping using hollow fiber membrane contactor. Two different models were developed during the study. Model 1 was assumed only free ammonia ($NH_3$) transfer in stripping process, whereas the Model 2 was assumed with total ammonia ($NH_3+{NH_4}^+$) transfer. Ammonium chloride ($NH_4CI$), sodium hydroxide(NaOH) were used to make ammonia solution, which was concentration of 25 mg as N/L at a pH of 10.5. The experimental conditions were such that, the liquid flow was in tube-side in upward direction and t he gas flow was on shell-side in downward direction a t room temperature. The experimental and modeling results showed that marginal difference were observed at low gas flux. However the difference between the both models and experimental value were increased when the gas flux was increased. The study concludes that the Model 1 with free ammonia is more appropriate when both models were compared and useful in ammonia stripping process at low gas flux.

암모니아수 흡수제를 이용한 이산화탄소 제거 공정에서 침전생성이 조업영역에 미치는 영향 (Effect of Precipitation on Operation Range of the CO2 Capture Process using Ammonia Water Absorbent)

  • 유정균;박호석;홍원희;박종기;김종남
    • Korean Chemical Engineering Research
    • /
    • 제45권3호
    • /
    • pp.258-263
    • /
    • 2007
  • 배가스 이산화탄소 처리를 위한 화학적 흡수공정의 새로운 흡수제로서 암모니아수의 적용 가능성을 고찰하였다. 이산화탄소 흡수용량과 침전 발생의 관점에서 적합한 암모니아수 흡수제 농도와 $CO_2$ 부하(loading, $molCO_2/molNH_3$)를 결정하였다. 이를 위하여 전해액에 대한 Pitzer 모델을 이용하여 암모니아 흡수제 농도에 따른 흡수용량과 침전 발생여부를 계산하였다. $5\;molNH_3/kgH_2O$ 이상의 암모니아수 흡수제를 사용하여 기존 아민류 흡수제 이상의 흡수용량은 얻을 수 있었다. 각 암모니아 흡수제 농도에서 $NH_4HCO_3$ 침전의 발생으로 인하여 조업이 제약되는 $CO_2$ 부하를 구하였다. $5{\sim}14\;molNH_3/kgH_2O$의 암모니아 흡수제는 293, 313 K에서 $CO_2$ 부하 0.5 이상에서 침전이 발행하였다. 침전 생성 $CO_2$ 부하값 이하로 흡수탑을 조업함으로써 고농도 암모니아 흡수제가 배가스 $CO_2$ 처리 공정에 사용될 수 있음을 알 수 있었다. 흡수용량과 침전발생을 고려하여 배가스 이산화탄소 처리를 위한 흡수제 최적온도는 암모니아수 농도에 따라 297~312 K이었다.

나노펄스 플라즈마를 이용한 탈황 시스템의 H2O 및 NH3, 펄스 인가전압에 따른 입자변환 분석 (The effect of H2O, NH3 and applied voltage to the particle conversion in the desulfurization system using a nano-pulse plasma)

  • 김영훈;신동호;이건희;홍기정;김학준;김용진;한방우;황정호
    • 한국입자에어로졸학회지
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2020
  • Nano-pulse plasma technology has great potential as the process simplicity, high efficiency and low energy consumption for SO2 removal. The research on the gas-to-particle conversion is required to achieve higher efficiency of SO2 gas removal. Thus, we studied the effect of the relative humidity, NH3 concentration and applied voltage of the nano-pulse plasma system in the gas to particle conversion of SO2. The particles from the conversions were increased from 10 to 100 nm in diameter as relative humidity, NH3 concentration, applied voltage increases. With these results, nano-pulse plasma system can be used to more efficient removal of SO2 gas by controlling above parameters.

Water-cyclone을 이용한 미세입자 및 수용성가스 제거효율에 대한 실험적 연구 (Experimental Study on Particle and Soluble Gas Removal Efficiency of Water-cyclone)

  • 김춘이;권성안;이상준;고창복
    • 한국대기환경학회지
    • /
    • 제29권2호
    • /
    • pp.163-170
    • /
    • 2013
  • The fine-particles, moisture and variety of hazardous gases are produced during electronic manufacture process. Most of the fine-particles are 0.1~10 ${\mu}m$ in size and the hazardous gases such as HF, $SiH_4$, CO, $NH_3$, etc. seriously affect environment, human's body and manufacturing process. To remove these characterized gases and fine-particles, Water-Cyclone designed and tested for removal efficiency on fine-particles and $NH_3$ under -980Pa negative pressure condition. As a result, under 0.1~1.0 $m^3/min$ flow condition, the efficiency on 5 ${\mu}m$ particles was 80~96%, 10 ${\mu}m$ particles was 86~96%, and 20 ${\mu}m$ particles was 91~99%. Besides, the removal efficiency on soluble gas $NH_3$ was 56.5% at 0.5m3/min and 79.1% at 1.0m3/min under 500 ppm flow concentration and 70.0% at 1.0 $m^3/min$ under 1,000 ppm flow concentration. Therefore, on particles, as the flow rate and particle size increased, the collection efficiency rate was increased. On soluble gas, as the flow rate increased, the removal efficiency was increased under the same concentration.

고주파 연면방전체를 이용한 $NH_3$ 처리성능에 관한 연구 (A Study on Removal Performance of $NH_3$ Odor Gas Using High Frequency Surface Discharge Body)

  • 이주상
    • 환경위생공학
    • /
    • 제11권1호
    • /
    • pp.9-15
    • /
    • 1996
  • The purpose of this study was to evaluate the decomposition efficiency of $NH_3$ odor gas using high frequency surface discharge body. The results from this study are as follows; 1, Voltage and frequency of electric elements have effects on removal of $NH_3$ odor. The higher these two elements were set up, the more efficiently deodorizing processing worked. In this experiment, the optimum voltage and frequency applicable were observed around AC 6.0 kVp-p and 24.0 kHz respectively. 2. The temperature, humidity and residence time were observed strong variables for NH$_3$ removal process. Its performance had limits at high temperature and humidity conditions. The longer the residence time continued, the more efficiently deodorization process worked. The experimental results showed that the deodorization was efficiently processed under such conditions as $30.0^{\circ}C$ in temperature, 60rh% in humidity and 0.3 sec in residence time. 3. It was observed that in deodorization experiment, $NH_3$ odor gas was perfectly decomposed under the concentration condition below 15.0ppm. Moreover it was considered as economic and practical in terms of maintenance cost when compared with other deodorization methods.

  • PDF

Biomedia를 충전한 Biofilter에서 H2S와 NH3 혼합악취의 제거 (Removal of Mixed Gases of H2S and NH3 by the Biofilter Packed with Biomedia)

  • 임정수;조욱상;이은영
    • 청정기술
    • /
    • 제12권3호
    • /
    • pp.165-170
    • /
    • 2006
  • Polyurethane, PVA(polyvinyl alcohol)와 지렁이 분변토로 제작한 biomedia를 충진한 바이오필터(biofilter)를 이용하여 $H_2S$$NH_3$의 혼합 악취를 제거하였다. $NH_3$ 농도를 50 ppmv로 고정시킨 후, $H_2S$의 농도는 1~489 ppmv까지 증가시키며 제거효율을 살펴보았다. 또한 $NH_3$의 농도를 점진적으로 증가시켜 80, 100, 200, 300, 400, 500 ppmv 으로 설정하여 각각의 $NH_3$농도가 고정된 조건에서는 $H_2S$를 점차적으로 농도를 증가시켜주며 $NH_3$$H_2S$ 가스의 제거효율을 알아보았다. 혼합 악취가 공급되는 조건에서 $NH_3$의 유입 부하량은 입구농도가 50~300 ppmv 까지는 부하량 $11.14g\;N{\cdot}m^{-3}{\cdot}h^{-1}$이 증가함에 따라 제거용량도 비례하여 증가하였다. 입구농도가 300 ppmv 이상으로 증가함에 따라 유입 부하량은 증가하는 반면, 제거효율과 제거용량은 감소되는 것을 볼 수 있었다. 복합악취가 공급되는 조건에서 $H_2S$ 최대 부하량은 $40.27g\;S{\cdot}m^{-3}{\cdot}h^{-1}$이하이며, $NH_3$ 부하량이 $15.25g\;N{\cdot}m^{-3}{\cdot}h^{-1}$ 이하인 조건에서는 $NH_3$의 공급에 의해 $H_2S$의 제거효율은 큰 영향을 받지 않는 것으로 나타났다.

  • PDF

루테늄이 첨가된 텅스텐 산화물을 이용한 마이크로 가스 센서의 암모니아 가스 감지 특성 (Gas Sensing Characteristics of Ru doped-WO3 Micro Gas Sensors)

  • 이회중;윤진호;김범준;장현덕;김정식
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.395-399
    • /
    • 2011
  • In this study, micro gas sensors for ammonia gas were prepared by adopting MEMS technology and using a sol-gel process. Three types of sensors were prepared via different synthesis routes starting with W sol and Ru sol mixture. This mixture was deposited on a MEMS platform and the platform was subsegueny heated to a temperature of $350^{\circ}C$. The topography and crystal structure of the sensing film were studied using FE-SEM and XRD. The response of the gas sensor to $NH_3$ gas was examined at various operating temperatures and gas concentrations. The sensor response increased almost linearly with gas concentration and the best sensing response was obtained at $333^{\circ}C$ for 5.0 ppm $NH_3$ for the specimen prepared by coating $WO_3$ powders with the Ru sol mixture.

현장실험을 통한 축산시설로부터 배출되는 축산악취의 확산 평가 (Evaluation of Odor Dispersion from Livestock Building through Field Experiment)

  • 여욱현;이인복;하태환;데카노 크리스티나;김락우;이상연;김준규;최영배;박유미
    • 한국농공학회논문집
    • /
    • 제61권6호
    • /
    • pp.21-30
    • /
    • 2019
  • Livestock odor is comprised of mixed type of odorous compounds. Among these, ammonia ($NH_3$) and hydrogen sulfide ($H_2S$) are the two known major odor causing substances. Because high odor concentration reduces productivity of livestock and causes damage to the surrounding communities, quantitative analysis is needed to manage the odor inside and outside the livestock facilities. It is also necessary to evaluate odor dispersion according to the distance between the receptors taking into account the influence of odor source and weather condition. Therefore, in this study, we tried to evaluate the internal environment and odor dispersion from experimental pig house considering weather conditions. An experimental farm was specifically selected to eliminate the interference of odors generated by adjacent farms. $NH_3$ and complex odor were quantitatively analyzed using a gas detector and air dilution sensory method. The concentration of $NH_3$ and complex odor in pig house showed a distinct concentration difference according to the cleaning and ventilation conditions. $NH_3$ concentration and complex odor was lower than emission standard in the pig house and at the site boundary. The average $NH_3$ concentration (P1~P3) and the $NH_3$ concentration at the site boundary (S1) were strongly correlated with R=0.77. While the correlation for complex odor inside and at the site boundary had R=0.52. The correlation coefficient between $NH_3$ and the complex odor was 0.80.

은 나노 콜로이드를 이용한 돼지분뇨의 악취 저감 효과 (Reduction of Odor Emission from Swine Excreta using Silver Nano Colloid)

  • 김구필;최영수;오광현;구경본;서상룡;유수남;이경환
    • Journal of Biosystems Engineering
    • /
    • 제36권5호
    • /
    • pp.342-347
    • /
    • 2011
  • The effect of SNC(silver nano colloid) on the emission reduction of odors such as ammonia ($NH_3$), hydrogen sulfide ($H_2S$), and methane ($CH_4$) from swine excreta was studied. Silver has been used as an universal antibiotic substance and can reduce the emission of some gases by sterilizing action. Therefore, an apparatus which produces SNC was developed and was conducted its performance test. Also, the SNC made by the apparatus was applied to swine excreta sampled from a piggery in oder to find the effect on the reduction of odor emission. An electrolysis apparatus was developed to produce SNC and its capacity was 0.024 ppm/$hr{\cdot}L$. The effects of SNC on the reduction of odor emission from swine excreta were tested for bad smell gases of ammonia ($NH_3$), hydrogen sulfide ($H_2S$) and methane ($CH_4$). For ammonia gas, factorial experiments were conducted to find the effects of concentration and application rate of SNC. The test results for the different concentrations of 20 ppm, 50 ppm, and 100 ppm showed that the more concentration of SNC was increased, the more emission reduction of ammonia gas increased. From the test results about the effect of application rate, the more SNC was applied, the more emission reduction of $NH_3$ increased. In order to reduce the concentration of $NH_3$ below 5 ppm, SNC of 50 ppm is recommended to be applied at an interval of 6 hours, and is mixed with swine excreta in the volumetric ratio of 4:1. For hydrogen sulfide gas, the concentration was decreased as time went by and was reduced rapidly in the first stage of the tests for all applied concentrations of SNC (20 ppm, 50 ppm, and 100 ppm). Especially, when 100 ml of SNC with 100 ppm was applied, emission of hydrogen sulfide gas was reduced rapidly during early 4 hours after the application of SNC. And, concentration of hydrogen sulfide gas was maintained below 20 ppm after 12 hours. For methane gas, t-test showed that there was no significance on the effect of its application for all applied concentrations of SNC. Therefore, it was concluded that the application of SNC on swine excreta had no effect on the emission reduction of $CH_4$.

악취 발산감소를 위한 필터의 이용 효과 (Effect of Biofilter on Reducing Malodor Emission)

  • 김원영;정광화;노진식;김원호;전병수;류호현;전영륜
    • 한국축산시설환경학회지
    • /
    • 제4권2호
    • /
    • pp.161-166
    • /
    • 1998
  • Controlling malodor originating from livestock feces has become a major issue, due to its influence on the health of man and livestock, together with its influences on atmospheric pollution. In this study, Five types of biofilters filled with saw-dust, night soil, fermented compost, leaf mold and a mixture(a compound of night soil, fermented compost and leaf mold at the same rates, respectively) were manufactured and tested. To study the effect of the biofilter on reducing malodor in a composting facility and swine building, a pilot scale composting facility enclosed with polyethylene film was constructed. Swine feces was composted in the facility and malodorous gas generated from the decomposition of organic matter in the feces was gathered by vacuum pump. Each biofilter achieved 87∼96% NH3 removal efficiency. This performance was maintained throughout 10 days of operation. The highest NH3 removal efficiency was achieved by leaf mold on the first day of operation period. It reduced the concentration of NH3 by about 96%. Night soil and fermented compost showed nearly equal performance of 93 to 94% for 10 days from the beginning of operation. The mixture achieved the lowest NH3 removal efficiency. It reduced NH3 concentration by about 89∼94% for 10 days from the beginning of operation. However NH3 removal efficiency of each biofilter declined with the passage of operational time. After 30 days from the beginning of operation, NH3 removal efficiency of each biofilter of each biofilter was below 60%, respectively. The concentration of H2S and CH3-SH originating from compost were equal to or less than 5mg/l and 3mg/l, respectively. After passing throughout the biofilter, the concentration of H2S and CH3-SH were not detected.

  • PDF