• Title/Summary/Keyword: NF-E2

Search Result 438, Processing Time 0.031 seconds

Application model research on visualizing anti-inflammation effects by using the virtual cell (가상세포를 활용한 항염증 효능 응용모델 연구)

  • Kim, Chul;Yea, Sang-Jun;Kim, Jin-Hyun;Kim, Sang-Kyun;Jang, Hyun-Chul;Kim, An-Na;Nam, Ky-Youb;Song, Mi-Young
    • Herbal Formula Science
    • /
    • v.18 no.2
    • /
    • pp.227-239
    • /
    • 2010
  • Objective : The purpose of this study was to develop the simulator which can analyze the anti-inflammatory effects of herbs based on e-cell, or the virtual cell. Method : We have ensured the medical herbs and its active compounds by investigating the oriental medicine records and NBCI(Biomedicine database). Also we have developed the web-based search system for confirming database related to anti-inflammation. We have researched the cell signal pathway related with inflammatory response control and established the mathematical model of herb interaction on selected signal pathway in e-cell. Finally we have developed the prototype which can confirm the result of this model visibly. Results : We constructed the database of 62 cases of anti-inflammatory active compounds in 61 cases of medical herbs which have been known anti-inflammation effects in the paper, 16 cases of inflammatory factors, 10 cases of signal pathways related with inflammatory response and 6,834 cases of URL(Uniform Resource Locator) of referenced papers. And we embodied the web-based research system, which can research this database. User can search basic and detailed information of medical plants related with anti-inflammatory by using information system. And user can acquire information on an active compounds, a signal pathway and a link URL of related paper. Among investigated ten pathways, we selected NF-${\kappa}B$, which plays important role in activation of immune system, and we searched the mechanisms of actions of proteins which could be components of this pathway. We reduced total network into IKK-$I{\kappa}B$ - NF-${\kappa}B$, and completed mathematic modeling by using ordinary differential equations and response variables of $I{\kappa}B-NF-{\kappa}B$ signaling model network which is suggested by Baltimore Group. We designed OED(Ordinary Differential Equation) for response of IKK, $I{\kappa}B$, $NF-{\kappa}B$ in e-cell's cytoplasm and nucleus, and measured whether an active compound of medicinal plants which is inputted by an user would have a anti-inflammation effects in obedience to change in concentration over time. The proposed model was verified by using experimental results of the papers which are listed on NCBI.

Downregulatory Effect of AGI-1120 $({\alpha}-Glucosidase Inhibitor)$ and Chaga Mushroom (Inonotus obliquus) on Cellular $NF-{\kappa}B$ Activation and Their Antioxidant Activity (AGI-1120과 차가버섯의 $NF-{\kappa}B$ 활성화 억제 및 항산화 효과)

  • Song, Hee-Sun;Lee, Young-Jong;Kim, Seung-Kyoon;Moon, Won-Kuk;Kim, Dong-Woo;Kim, Yeong-Shik;Moon, Ki-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.1 s.136
    • /
    • pp.92-97
    • /
    • 2004
  • Effect of AGI $({\alpha}-Glucosidase\;Inhibitor)-1120$, pine (Pinus densiflora) bark extract and Chaga mushroom (Inonotus obliquus) - and Chaga mushroom mycelium extracts on cellular $NF-{\kappa}B$ activation in malignant human keratinocytes (SCC-13) were evaluated to elucidate the possible correlation of $NF-{\kappa}B$ with antioxidant activity. The antioxidant activities of these natural products were examined in three different evaluation methods, i.e., lipid peroxidation value (POV) evaluation test, and 1,1diphenyl-2-picrylhydrazyl radical (DPPH) and nitric oxide (NO) scavenging test. In a cell-based $NF-{\kappa}B$ monitoring assay systern, all samples revealed the downregulatory profiles on the cellular $NF-{\kappa}B$ activity. AGI -1120 (1, 2 mg) and Chaga mushroom extract (0.05, 0.1 mg) downregulated the $NF-{\kappa}B$ activity in a dose-dependent manner. Chaga mushroom mycelium extract (5 mg) significantly inhibited the $NF-{\kappa}B$ activity (p<0.05). Although AGI-1120 and Chaga mushroom mycelium extract exhibited no antioxidant activities evaluated in pay, Chaga mushroom extract showed antioxidant in a dose-dependent manner at concentrations of $0.05{\sim}1$ mg. While AGI-1120 and Chaga mushroom extract possessed a relatively potential DPPH radical scavenging activity, the NO scavenging activity of Chaga mushroom extract $(SC_{50}:47\;{mu}g)$ was higher than the known antioxidant, vitamin C $(SC_{50}:77\;{mu}g)$. These results suggest that AGI-1120 and Chaga mushroom- and Chaga mushroom mycelium extracts may serve as an useful radical scavenging antioxidant agents with $NF-{\kappa}B$ inhibitory effect in human skin.

Immune Enhancement Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways on RAW 264.7 Cells

  • Monmai, Chaiwat;Go, Seok Hyeon;Shin, Il-shik;You, SangGuan;Lee, Hyungjae;Kang, SeokBeom;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.349-356
    • /
    • 2018
  • Asterias amurensis is a marine organism that causes damage to the fishing industry worldwide; however, it has been considered a promising source of functional components. The present study aimed to investigate the immune-enhancing effects of fatty acids from three organs of A. amurensis on murine macrophages (RAW 264.7 cells). A. amurensis fatty acids boosted production of immune-associated factors such as nitric oxide (NO) and prostaglandin E2 in RAW 264.7 cells. A. amurensis fatty acids also enhanced the expression of critical immune-associated genes, including iNOS, $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6, as well as COX-2. Western blotting showed that A. amurensis fatty acids stimulated the $NF-{\kappa}B$ and MAPK pathways by phosphorylation of $NF-{\kappa}B$ p-65, p38, ERK1/2, and JNK. A. amurensis fatty acids from different tissues resulted in different levels of $NF-{\kappa}B$ and MAPK phosphorylation in RAW 264.7 cells. The results increase our understanding of how A. amurensis fatty acids boost immunity in a physiological system, as a potential functional material.

The Anti-inflammatory Mechanism of the Peel of Zanthoxylum piperitum D.C. is by Suppressing NF-κB/Caspase-1 Activation in LPS-Induced RAW264.7 Cells

  • Choi, Yun-Hee;Myung, Noh-Yil
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.669-676
    • /
    • 2019
  • Zanthoxylum piperitum D.C. (ZP) peels has been used as a natural spice and herb medicine for hypertension reduction, for strokes, and for its anti-bacterial and anti-oxidant activity. However, the anti-inflammatory mechanisms employed by ZP have yet to be completely understood. In this study, we elucidate the anti-inflammatory mechanism of ZP in lipopolysaccharide (LPS)-induced RAW264.7 cells. We evaluated the effects of ZP in LPS-induced levels of inflammatory cytokines, prostaglandin E2 (PGE2), and caspase-1 using ELISA. The expression levels of inflammatory-related genes, including cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), were assayed by Western blot analysis. We elucidated the effect of ZP on nuclear factor (NF)-κB activation by means of a luciferase activity assay. The findings of this study demonstrated that ZP inhibited the production of inflammatory cytokine and PGE2 and inhibited the increased levels of COX-2 and iNOS caused by LPS. Additionally, we showed that the anti-inflammatory effect of ZP arises by suppressing the activation of NF-κB and caspase-1 in LPS- induced RAW264.7 cells. These results provide novel insights into the pharmacological actions of ZP as a potential candidate for development of new drugs to treat inflammatory diseases.

The Anti-inflammatory Mechanism of Protaetia brevitarsis Lewis via Suppression the Activation of NF-κB and Caspase-1 in LPS-stimulated RAW264.7 Cells

  • Myung, Noh-Yil;Ahn, Eun-Mi;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.267-274
    • /
    • 2020
  • The larva of Protaetia brevitarsis Lewis (P. brevitarsis), edible insect, is traditionally consumed as alternative source of nutrients and has various health benefits. However, the exact pharmaceutical effects of P. brevitarsis on inflammatory response are still not well understood. Thus, we investigated the anti-inflammatory effects and mechanisms of P. brevitarsis in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. We investigated the effects of P. brevitarsis on the expression levels of inflammatory-related genes, including inflammatory cytokines, prostaglandin E2 (PGE2), cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in LPS-stimulated RAW264.7 cells. To understand the anti-inflammatory mechanism of P. brevitarsis, we explored the regulatory effect of P. brevitarsis on nuclear factor (NF)-κB and caspase-1 activation. The findings of this study demonstrated that P. brevitarsis inhibits the LPS-induced inflammatory cytokine and PGE2 levels, as well as COX-2 and iNOS expression. Moreover, we confirmed that the anti-inflammatory effect of P. brevitarsis occurs via suppression of the activation of NF-κB and caspase-1. Conclusively, these findings provide experimental evidence that P. brevitarsis may be useful candidate for the treatment of inflammatory-related diseases.

The Anti-inflammatory Mechanism of Blueberry is through Suppression of NF-kB/Caspase-1 Activation in LPS-induced RAW264.7 Cells

  • Mi-Ok Yang;Noh-Yil Myung
    • Korean Journal of Plant Resources
    • /
    • v.37 no.3
    • /
    • pp.256-262
    • /
    • 2024
  • Blueberry (BB), fruit of Vacciniumi, has been hailed as an antioxidant superfood. BB is a rich source of vitamins, minerals, flavonoids, phenolic acids and known to have a variety of pharmacological actions. The purpose of this work is to clarify the anti-inflammatory mechanism of BB in lipopolysaccharide (LPS)-activated RAW264.7 macrophage. We explored the effects of BB on the production of inflammatory cytokines, prostaglandin E2 (PGE2) and expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 macrophage. Moreover, to investigate the molecular mechanisms by BB, we evaluated whether BB modulate nuclear factor-kappa B (NF)-kB pathway and caspase- 1 activation. The findings of this work demonstrated that BB alleviated the LPS-enhanced inflammatory cytokines and PGE2, as well as COX-2 levels. Additionally, we demonstrated that the anti-inflammatory mechanism of BB occurs due to the attenuation of IκB-α degradation, NF-kB translocation and caspase-1 activation. Conclusively, these findings provide evidence that BB may be useful agents in the treatment of inflammation.

Anti-inflammatory Efficacy of HK Shiitake Mushroom Mycelium in LPS-treated RAW 264.7 Cells Through Down-regulation of NF-κB Activation (LPS로 활성화한 RAW 264.7 세포에서 HK표고버섯균사체의 NF-κB 활성 억제를 통한 항염증 효과)

  • Song, Chae Yeong;Oh, Tae Woo;Kim, Hoon Hwan;Lee, Yu Bin;Kim, Jeong Ok;Kim, Gon Sup;Ha, Yeong Lae
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.491-500
    • /
    • 2022
  • HK shiitake mushroom mycelium (HKSMM), containing 14% β-glucan, is a health functional food ingredient individually approved by the Korea Ministry of Food and Drug Safety for liver health. The anti-inflammatory effect of a 50% aqueous ethanol extract of HKSMM (designated HKSMM50) was studied in RAW 264.7 macrophage cells treated with lipopolysaccharide (LPS). An active hexose correlated compound (AHCC) was used as a positive control. LPS-activated RAW 264.7 cells were treated with HKSMM50 and AHCC (0, 20, 100, 500 ㎍/ml) and cultured for 24 hr. Inflammation-related elements in the supernatant were measured using enzyme-linked immunosorbent assay (ELISA) kits, and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins in the cells was analyzed by Western blotting. The HKSMM50 lowered iNOS and COX-2 protein expressions, and nuclear factor-kappa B (NF-κB), nitric oxide (NO) and prostaglandin E2 (PGE2) contents in a concentration-dependent manner as compared to LPS treatment. Similarly, the HKSMM50 lowered the content of pro-inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4) and interleukin-6 (IL-6) contents and increased the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). The efficacy of the AHCC treatment was similar to that of the HKSSM50 treatments. These results indicate that HKSMM50 showed an anti-inflammatory effect in LPS-treated RAW 264.7 cells by down-regulation of NF-κB signaling and suggest that HKSMM could be used as a health functional food ingredient to help improve immune function.

Molecular Cloning and Characterization of Maltooligosyltrehalose Synthase Gene from Nostoc flagelliforme

  • Wu, Shuangxiu;Shen, Rongrong;Zhang, Xiu;Wang, Quanxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.579-586
    • /
    • 2010
  • A genomic DNA fragment encoding a putative maltooligosyltrehalose synthase (NfMTS) for trehalose biosynthesis was cloned by the degenerate primer-PCR from cyanobacterium Nostoc flagelliforme. The ORF of NfMTS was 2,799 bp in length and encoded 933 amino acid residues constituting a 106.6 kDa protein. The deduced amino acid sequence of NfMTS contained 4 regions highly conserved for MTSs. By expression of NfMTS in E. coli, it was demonstrated that the recombinant protein catalyzed the conversion of maltohexaose to maltooligosyl trehalose. The $K_m$ of the recombinant enzyme for maltohexaose was 1.87 mM and the optimal temperature and pH of the recombinant enzyme was at $50^{\circ}C$ and 7.0, respectively. The expression of MTS of N. flagelliforme was upregulated, and both trehalose and sucrose contents increased significantly in N. flagelliforme during drought stress. However, trehalose accumulated in small quantities (about 0.36 mg/g DW), whereas sucrose accumulated in high quantities (about 0.90 mg/g DW), indicating both trehalose and sucrose were involved in dehydration stress response in N. flagelliforme and sucrose might act as a chemical chaperone rather than trehalose did during dehydration stress.

Downregulatory Effect of Extracts from Mistletoe (Viscum album) and Pueraria Root (Pueraria radix) on Cellular NF-κB Activation and heir Antioxidant Activity (겨우살이(Viscum album)와 칡뿌리(Pueraria radix) 추출물의 NF-κB활성 억제 및 항산화 효과)

  • Song, Hee-Sun;Park, Yeon-Hee;Kim, Seung-Kyoon;Moon, Won-Kuk;Kim, Dong-Woo;Moon, Ki-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.10
    • /
    • pp.1594-1600
    • /
    • 2004
  • Effects of mistletoe (Viscum album) extract and pueraria (Pueraria radix) extract on cellular NF-$textsc{k}$B activity were evaluated in human malignant keratinocytes (SCC-13) to elucidate the possible correlation of NF-$textsc{k}$B with antioxidant activity. The antioxidant activities of these natural extracts were examined in four different evaluation methods, i.e., lipid peroxidation value (POV) evaluation test, I,l-diphenyl-2-picrylhydrazyl radical (DPPH), nitric oxide (NO) scavenging test, and reducing power assay. Pueraria extract (0.5 mg) and mistletoe extract (5 mg) downregulated the cellular NF-$textsc{k}$B activation up to 35% and 10% compared to the control, respectively, although their effects were lower than the known NF-$textsc{k}$B downregulator, vitamin C (8.8 mg, 53%) in a cell-based NF-$textsc{k}$B activity assay system. In the POV test, relative antioxidant activities of mistletoe extract (86%) and pueraria extract (75%) were significantly higher than the known antioxidant, vitamin C (48%) at the same concentration (10 mg) and the degree of activity increased in a dose-dependent manner. Pueraria extract showed more potential radical scavenging activities than those of mistletoe extract evaluated in both DPPH and NO test. Especially, the NO radical scavenging activity of pueraria extract ($SC_{50}$/, 88 $\mu$g) was comparable to that of vitamin C ($SC_{50}$/, 77 $\mu$g). Even pueraria extract possessed a much less reducing power compared to vitamin C, it also revealed higher reducing power than that of mistletoe extract. These results indicate that mistletoe extract and pueraria extract may serve as an useful natural antioxidant agents, and led to suggest the hypothesis that compounds having an antioxidant activity, i.e., radical scavenging activity or reducing power may be correlated with the downregulation of NF-$textsc{k}$B activation in human keratinocytes.