Browse > Article
http://dx.doi.org/10.4014/jmb.0908.08001

Molecular Cloning and Characterization of Maltooligosyltrehalose Synthase Gene from Nostoc flagelliforme  

Wu, Shuangxiu (Department of Biology, College of Life and Environmental Science, Shanghai Normal University)
Shen, Rongrong (Department of Biology, College of Life and Environmental Science, Shanghai Normal University)
Zhang, Xiu (Department of Biology, College of Life and Environmental Science, Shanghai Normal University)
Wang, Quanxi (Department of Biology, College of Life and Environmental Science, Shanghai Normal University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.3, 2010 , pp. 579-586 More about this Journal
Abstract
A genomic DNA fragment encoding a putative maltooligosyltrehalose synthase (NfMTS) for trehalose biosynthesis was cloned by the degenerate primer-PCR from cyanobacterium Nostoc flagelliforme. The ORF of NfMTS was 2,799 bp in length and encoded 933 amino acid residues constituting a 106.6 kDa protein. The deduced amino acid sequence of NfMTS contained 4 regions highly conserved for MTSs. By expression of NfMTS in E. coli, it was demonstrated that the recombinant protein catalyzed the conversion of maltohexaose to maltooligosyl trehalose. The $K_m$ of the recombinant enzyme for maltohexaose was 1.87 mM and the optimal temperature and pH of the recombinant enzyme was at $50^{\circ}C$ and 7.0, respectively. The expression of MTS of N. flagelliforme was upregulated, and both trehalose and sucrose contents increased significantly in N. flagelliforme during drought stress. However, trehalose accumulated in small quantities (about 0.36 mg/g DW), whereas sucrose accumulated in high quantities (about 0.90 mg/g DW), indicating both trehalose and sucrose were involved in dehydration stress response in N. flagelliforme and sucrose might act as a chemical chaperone rather than trehalose did during dehydration stress.
Keywords
Nostoc flagelliforme; maltooligosyltreha1ose synthase; degenerate primer; desiccation stress; cyanobacterium;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Crowe, J. H., L. M. Crowe, and D. Chapman. 1984. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science 223: 701-703.   DOI
2 Elbein, A. D., Y. T. Pan, I. Pastuszak, and D. Carroll. 2003. New insights on trehalose: A multifunctional molecule. Glycobiology 13: 17R-27R.   DOI
3 Gao, K. and D. Zou. 2001. Photosynthetic bicarbonate utilization by a terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae). J. Phycol. 37: 768-771.   DOI
4 Itkor, P., N. Tsukagoshi, and S. Udaka. 1990. Nucleotide sequence of the raw-starch-digesting amylase gene from Bacillus sp. B1018 and its strong homology to the cytodextrin glucanotransferase genes. Biochem. Biophys. Res. Commun. 166: 630-636.   DOI   ScienceOn
5 Jespersen, H. M., E. A. MacGregor, M. R. Sierks, and B. Svensson. 1991. Comparison of the domain-level organization of starch hydrolases and related enzymes. J. Biochem. 280: 51-55.
6 Pramanik, M. H. R. and R. Imai. 2005. Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol. Biol. 58: 751-762.   DOI   ScienceOn
7 Ravi, K. A., N. Subhasha, M. Archana, M. K. Arvind, and P. S. Sureshwar. 2008. Trehalose-producing enzymes MTSase and MTHase in Anabaena 7120 under NaCl stress. Curr. Microbiol. 56: 429-435.   DOI   ScienceOn
8 Saito, K., H. Yamazaki, Y. Ohnishi, S. Fujimoto, E. Takahashi, and S. Horinouchi. 1998. Production of trehalose synthase from basidiomycete, Grifola frondosa, in Escherichia coli. Appl. Microbiol. Biotechnol. 50: 193-198.   DOI   ScienceOn
9 Sano, F., N. Asakawa, Y. Inoue, and M. Sakurai. 1999. A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39: 80-87.   DOI   ScienceOn
10 Schiraldi, C., I. Di. Lernia, and M. De. Rosa. 2002. Trehalose production: Exploiting novel approaches. Trends Biotechnol. 20: 420-425.   DOI   ScienceOn
11 Cheng, Z. J. and H. Z. Cai. 1988. A preliminary study on the early-stage development of three species of Nostoc. J. Northwest Normal Univ. 3: 41-52.
12 Dodds, W. K., D. A. Gudder, and D. Mollenhauer. 1995. The ecology of Nostoc. J. Phycol. 31: 2-18.   DOI   ScienceOn
13 Yoshida, T. and T. Sakamoto. 2009. Water-stress induced trehalose accumulation and control of trehalase in the cyanobacterium Nostoc punctiforme IAM M-15. J. Gen. Appl. Microbiol. 55: 135-145.   DOI   ScienceOn
14 Hill, D. R., A. Peat, and M. Potts. 1994. Biochemistry and structure of the glycan secreted by desiccation-tolerant Nostoc commune (cyanobacteria). Protoplasma 182: 126-148.   DOI
15 Seo, J.-S., J. H. An, M.-Y. Baik, C. S. Park, J.-J. Cheong, T. W. Moon, K. H. Park, Y. D. Choi, and C. H. Kim. 2007. Molecular cloning and characterization of trehalose biosynthesis genes from hyperthermophilic archaebacterium Metallosphaera hakonesis. J. Microbiol. Biotechnol. 17: 123-129.
16 Streeter, J. G. and M. L. Gomez. 2006. Three enzymes for trehalose synthesis in Bradyrhizobium cultured bacteria and in bacteroids from soybean nodules. Appl. Environ. Microb. 72: 4250-4255.   DOI   ScienceOn
17 Reed, R. H., D. L. Richardson, S. R. C. Warr, and W. D. P. Stewart. 1984. Carbohydrate accumulation and osmotic stress in cyanobacteria. J. Gen. Microbiol. 130: 1-4.
18 Crowe, J. H., J. F. Carpenter, and L. M. Crowe. 1998. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60: 73-103.   DOI   ScienceOn
19 Nakada, T., K. Maruta, K. Tsusaki, M. Kubota, H. Chaen, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1995. Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci. Biotech. Biochem. 59: 2210-2214.   DOI   ScienceOn
20 Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666.   DOI
21 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
22 Higo, A., H. Katoh, K. Ohmori, M. Ikeuchi, and M. Ohmori. 2006. The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 152: 979-987.   DOI   ScienceOn
23 Kubota, M., K. Maruta, and S. Fukuda. 2001. Structure and function analysis of malto-oligosyltrehalose synthase. J. Appl. Glycosci. 48: 153-161.   DOI
24 Pan, Y. T., E. V. Koroth, W. J. Jourdian, R. Edmondson, C. J. David, I. Pastuszak, and A. D. Elbein. 2004. Trehalose synthase of Mycobacterium smegmatis: Purification, cloning, expression, and properties of the enzyme. Eur. J. Biochem. 271: 4259-4269.   DOI   ScienceOn
25 Kaneko, T., Y. Nakamura, C. P. Wolk, T. Kuritz, S. Sasamoto, A. Watanabe, et al. 2001. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 8: 205-213.   DOI   ScienceOn
26 Gao, K. 1998. Chinese studies on the edible blue-green alga, Nostoc flagelliforme: Review. J. Appl. Phycol. 10: 37-49.   DOI   ScienceOn
27 Jespersen, H. M., E. A. MacGregor, B. Henrissat, M. R. Sierks, and B. Svensson. 1993. Starch- and glycogen-debranching and branching enzymes: Prediction of structural features of the catalytic ($\beta$/$\alpha$)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J. Protein Chem. 12: 791-805.   DOI   ScienceOn
28 Lunn, J. E. 2007. Gene families and evolution of trehalose metabolism in plants. Funct. Plant Biol. 34: 550-563.   DOI   ScienceOn
29 Pang, W. T., S. X. Wu, J. Yu, and Q. X. Wang. 2007. Determination of trehalose and sucrose contents in Nostoc flagelliforme. J. Shanghai Normal Univ. (Natural Sciences Edition) 36: 73-76.
30 Allewalt, J. P., M. M. Bateson, N. P. Revsbech, K. Slack, and D. M. Ward. 2006. Effect of temperature and light on growth of and photosynthesis by Synechococcus isolates typical of those predominating in the octopus spring microbial mat community of Yellowstone National Park. Appl. Environ. Microbiol. 72: 544-550.   DOI   ScienceOn
31 MacGregor, E. A., S. Janecek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1-20.   DOI   ScienceOn