• Title/Summary/Keyword: NAND Flash Storage

Search Result 131, Processing Time 0.026 seconds

Dynamic NAND Operation Scheduling for Flash Storage Controller Systems (플래시 저장장치 컨트롤러 시스템을 위한 동적 낸드 오퍼레이션 스케줄링)

  • Jeong, Jaehyeong;Song, Yong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.188-198
    • /
    • 2013
  • In order to increase its performance, NAND flash memory-based storage is composed of data buses that are shared by a number of flash memories and uses a parallel technique that can carry out multiple flash memory operations simultaneously. Since the storage performance is strongly influenced by the performance of each data bus, it is important to improve the utilization of the bus by ensuring effective scheduling of operations by the storage controller. However, this is difficult because of dynamic changes in buses due to the unique characteristics of each operation with different timing, cost, and usage by each bus. Furthermore, the scheduling technique for increasing bus utilization may cause unanticipated operation delay and wastage of storage resource. In this study, we suggest various dynamic operation scheduling techniques that consider data bus performance and storage resource efficiency. The proposed techniques divide each operation into three different stages and schedule each stage depending on the characteristics of the operation and the dynamic status of the data bus. We applied the suggested techniques to the controller and verified them on the FPGA platform, and found that program operation decreased by 1.9% in comparison to that achieved by a static scheduling technique, and bus utilization and throughput was approximately 4-7% and 4-19% higher, respectively.

A NAND Flash File System for Sensor Nodes to support Data-centric Applications (데이터 중심 응용을 지원하기 위한 센서노드용 NAND 플래쉬 파일 시스템)

  • Sohn, Ki-Rack;Han, Kyung-Hun;Choi, Won-Chul;Han, Hyung-Jin;Han, Ji-Yeon;Lee, Ki-Hyeok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.47-57
    • /
    • 2008
  • Recently, energy-efficient NAND Flash memory of large volume is favored as next-generation storage for sensor nodes. So far, most sensor node file systems are based on NOR flash and few file systems are applicable to large NAND flash memory. Although it is required to develop new file systems taking account of the features of NAND flash memory, it is difficult to develop them mainly due to the limit of SRAM memory on sensor nodes. Sensor nodes support SRAM of $4{\sim}10$ KBytes only. In this paper, we designed and implemented a novel file system to support data-centric applications. To do this, we added EEPROM of 1 KBytes to store persistent file description data efficiently and devised a simple wear-leveling method. This reduces the number of page updates, resulting in reduction in energy use and increase in lifetime of sensor nodes.

A High Performance Flash Memory Solid State Disk (고성능 플래시 메모리 솔리드 스테이트 디스크)

  • Yoon, Jin-Hyuk;Nam, Eyee-Hyun;Seong, Yoon-Jae;Kim, Hong-Seok;Min, Sang-Lyul;Cho, Yoo-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.4
    • /
    • pp.378-388
    • /
    • 2008
  • Flash memory has been attracting attention as the next mass storage media for mobile computing systems such as notebook computers and UMPC(Ultra Mobile PC)s due to its low power consumption, high shock and vibration resistance, and small size. A storage system with flash memory excels in random read, sequential read, and sequential write. However, it comes short in random write because of flash memory's physical inability to overwrite data, unless first erased. To overcome this shortcoming, we propose an SSD(Solid State Disk) architecture with two novel features. First, we utilize non-volatile FRAM(Ferroelectric RAM) in conjunction with NAND flash memory, and produce a synergy of FRAM's fast access speed and ability to overwrite, and NAND flash memory's low and affordable price. Second, the architecture categorizes host write requests into small random writes and large sequential writes, and processes them with two different buffer management, optimized for each type of write request. This scheme has been implemented into an SSD prototype and evaluated with a standard PC environment benchmark. The result reveals that our architecture outperforms conventional HDD and other commercial SSDs by more than three times in the throughput for random access workloads.

Implementation of a Prefetch method for Secondary Index Scan in MySQL InnoDB Engine (MySQL InnoDB엔진의 Secondary Index Scan을 위한 Prefetch 기능 구현)

  • Hwang, Dasom;Lee, Sang-Won
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.208-212
    • /
    • 2017
  • Flash SSDs have many advantages over the existing hard disks such as energy efficiency, shock resistance, and high I/O throughput. For these reasons, in combination with the emergence of innovative technologies such as 3D-NAND and V-NAND for cheaper cost-per-byte, flash SSDs have been rapidly replacing hard disks in many areas. However, the existing database engines, which have been developed mainly assuming hard disks as the storage, could not fully exploit the characteristics of flash SSDs (e.g. internal parallelism). In this paper, in order to utilize the internal parallelism intrinsic to modern flash SSDs for faster query processing, we implemented a prefetching method using asynchronous input/output as a new functionality for secondary index scans in MySQL InnoDB engine. Compared to the original InnoDB engine, the proposed prefetching-based scan scheme shows three-fold higher performance in the case of 16KB-page sizes, and about 4.2-fold higher performance in the case of 4KB-page sizes.

An Efficient Address Mapping Table Management Scheme for NAND Flash Memory File System Exploiting Page Address Cache (페이지 주소 캐시를 활용한 NAND 플래시 메모리 파일시스템에서의 효율적 주소 변환 테이블 관리 정책)

  • Kim, Cheong-Ghil
    • Journal of Digital Contents Society
    • /
    • v.11 no.1
    • /
    • pp.91-97
    • /
    • 2010
  • Flash memory has been used by many digital devices for data storage, exploiting the advantages of non-volatility, low power, stability, and so on, with the help of high integrity, large capacity, and low price. As the fast growing popularity of flash memory, the density of it increases so significantly that its entire address mapping table becomes too big to be stored in SRAM. This paper proposes the associated page address cache with an efficient table management scheme for hybrid flash translation layer mapping. For this purpose, all tables are integrated into a map block containing entire physical page tables. Simulation results show that the proposed scheme can save the extra memory areas and decrease the searching time with less 2.5% of miss ratio on PC workload and can decrease the write overhead by performing write operation 33% out of total writes requested.

A Design of SSD Dedicated RAID System for Efficient Resource Management (효율적인 자원관리를 위한 SSD 전용 RAID 시스템 설계)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.109-114
    • /
    • 2024
  • Enterprise storage systems that require high data reliability are applying RAID (Redundant Array of Independent Disks) systems to recover from data loss and failure. In particular, RAID 5 ensures space efficiency and reliability by distributing parity across multiple storage devices. However, when storage devices have different capacities, RAID is built based on the smallest capacity storage device, resulting in wasted storage space. Therefore, research is needed to solve this resource management problem. In this paper, we propose a method for RAID grouping of each independent NAND flash memory block in a RAID consisting of SSD (Solid State Disk) with external SSDs as well as internal SSDs. This method is divided into a policy for delivering block information inside SSDs to the RAID system and a policy for RAID grouping of physical addresses delivered from the RAID system. This method allows us to maintain a RAID that does not waste resources when SSDs of different capacities are grouped into RAID5. Finally, we demonstrate the effectiveness of the proposed method through experiments.

Development of the Efficient Compressed Data Management System for Embedded DBMS (모바일 DBMS를 위한 효율적인 압축 데이터 관리 시스템의 개발)

  • Shin, Young-Jae;Hwang, Jin-Ho;Kim, Hak-Soo;Lee, Seung-Mi;Son, Jin-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.15D no.5
    • /
    • pp.589-598
    • /
    • 2008
  • Recently, Mobile Computing Devices are used generally. And Information which is processed by Mobile computing devices is increasing. Because information is digitalizing. So Mobile computing Devices demand an Embedded DBMS for efficient management of information. Moreover Mobile computing Devices demand an efficient storage management in NAND-type flash memory because the NAND-type flash memory is using generally in Mobile computing devices and the NAND-type flash memory is more expensive than the magnetic disks. So that in this paper, we present an efficient Compressed Data Management System for the embedded DBMS that is used in flash memory. This proposed system improve the space utilization and extend a lifetime of a flash memory because it decreases the size of data.

Dual Write Buffer Algorithm for Improving Performance and Lifetime of SSDs (이중 쓰기 버퍼를 활용한 SSD의 성능 향상 및 수명 연장 기법)

  • Han, Se Jun;Kang, Dong Hyun;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • In this paper, we propose a hybrid write buffer architecture comprised of DRAM and NVRAM on SSD and a write buffer algorithm for the hybrid write buffer architecture. Unlike other write buffer algorithms, the proposed algorithm considers read pages as well as write pages to improve the performance of storage devices because most actual workloads are read-write mixed workloads. Through effectively managing NVRAM pages, the proposed algorithm extends the endurance of SSD by reducing the number of erase operations on NAND flash memory. Our experimental results show that our algorithm improved the buffer hit ratio by up to 116.51% and reduced the number of erase operations of NAND flash memory by up to 56.66%.

Design of Asynchronous Non-Volatile Memory Module Using NAND Flash Memory and PSRAM (낸드 플래시 메모리와 PSRAM을 이용한 비동기용 불휘발성 메모리 모듈 설계)

  • Kim, Tae Hyun;Yang, Oh;Yeon, Jun Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.118-123
    • /
    • 2020
  • In this paper, the design method of asynchronous nonvolatile memory module that can efficiently process and store large amounts of data without loss when the power turned off is proposed and implemented. PSRAM, which takes advantage of DRAM and SRAM, was used for data processing, and NAND flash memory was used for data storage and backup. The problem of a lot of signal interference due to the characteristics of memory devices was solved through PCB design using high-density integration technology. In addition, a boost circuit using the super capacitor of 0.47F was designed to supply sufficient power to the system during the time to back up data when the power is off. As a result, an asynchronous nonvolatile memory module was designed and implemented that guarantees reliability and stability and can semi-permanently store data for about 10 years. The proposed method solved the problem of frequent data loss in industrial sites and presented the possibility of commercialization by providing convenience to users and managers.

SSR (Simple Sector Remapper) the fault tolerant FTL algorithm for NAND flash memory

  • Lee, Gui-Young;Kim, Bumsoo;Kim, Shin-han;Byungsoo Jung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.932-935
    • /
    • 2002
  • In this paper, we introduce new FTL(Flash Translation Layer) driver algorithm that tolerate the power off errors. FTL driver is the software that provide the block device interface to the upper layer software such as file systems or application programs that using the flash memory as a block device interfaced storage. Usually, the flash memory is used as the storage devices of the mobile system due to its low power consumption and small form factor. In mobile system, the state of the power supplement is not stable, because it using the small sized battery that has limited capacity. So, a sudden power off failure can be occurred when we read or write the data on the flash memory. During the write operation, power off failure may introduce the incomplete write operation. Incomplete write operation denotes the inconsistency of the data in flash memory. To provide the stable storage facility with flash memory in mobile system, FTL should provide the fault tolerance against the power off failure. SSR (Simple Sector Remapper) is a fault tolerant FTL driver that provides block device interface and also provides tolerance against power off errors.

  • PDF