• 제목/요약/키워드: NADH-dehydrogenase

검색결과 146건 처리시간 0.021초

Effect of Medicinal Plant Extracts on Alcohol Metabolism in Rat Liver

  • Lee, Seung-Eun;Bang, Jin-Ki;An, Tae-Jin;Yu, Young-Ju;Chung, Hae-Gon;Kim, Geum-Suk;Seong, Nak-Sul
    • 한국약용작물학회지
    • /
    • 제12권2호
    • /
    • pp.113-117
    • /
    • 2004
  • The experiment was conducted to evaluate the effects of medicinal plants on ethanol-metabolism. Sprague Dawley rats divided into 6 groups (n=8), fed with 10% ethanol and diets supplemented with each 1% of four plant extracts, ${\alpha}-tocopherol$ (as positive control) and fiber (as negative control) for 4 weeks. Group supplemented with plant extract of Ulmus davidiana showed the most high value (322 nM NADH/min/mg protein) in alcohol dehydrogenase (ADH) activity among the experimented groups $(144{\sim}312\;nM\;NADH/min/mg\;protein)$ at p<0.05. Groups fed with Lagerstroemia indica and Zelkova serrata extract-supplemented diets indicated high activity in aldehyde dehydrogenase (ALDH, 16.7 & 12.3 M NADH/min/mg protein), which were comparatively lower than 20.1 M NADH/min/mg protein of ${\alpha}-tocopherol$ fed group. All of the groups fed with plant extracts indicated very low GPT activities $(13.9{\sim}17.3\;IU/l)$ compared to those (146.1 & 128.6 IU/l) fed with ${\alpha}-tocopherol$ and fiber at p<0.05. From these results, it is suggested that Lagerstroemia indica have a potent ethanol-metabolizing activity.

Enterobacter aerogenes에 의한 수소 생산 초기 단계인 포메이트 탈카복시 반응 연구 (Formate Decarboxylation: Initial Step for Hydrogen Production by Enterobacter aerogenes)

  • 최진영;조영충;안익성
    • 공업화학
    • /
    • 제20권4호
    • /
    • pp.449-452
    • /
    • 2009
  • 철,셀레늄,그리고 몰리브데늄이 결여되어 있는 최소배지는 Escherichia coli MC4100의 혐기성 배양에서의 수소생산을 억제하였다. 철, 셀레늄, 그리고 몰리브데늄은 대장균과 Enterobacter 모두의 formate dehydrogenase ($FDH_{II}$) 효소의 보조인자로 알려져 있다.그러므로 이러한 미량성분들이 최소배지에 결여되어 있을 때는 $FDH_{II}$를 통한 수소생산이 대장균 뿐만 아니라 E. aerogenes에서도 저해될 것이다. 이러한 성분들이 부족할 때 E. aerogenes 413에 의한 수소 생산은 지연되었다.그러므로,E. aerogenes에 의한 수소 생산은 NADH의 재산화가 아닌 포메이트 탈카복시 반응에 의해서 시작된다고 사료된다.

전라남도 해남과 무안의 풀무치 개체군에 대한 마이토콘드리아 NADH dehydrogenase subunit 들을 이용한 계통분석 (Phylogenic Analysis of Locusta migratoria (Orthoptera: Acridae) in Haenam-gun and Muan-gun, Jeollanam-do, Korea Using Mitochondrial NADH dehydrogenase subunits)

  • 이관석;김영하;정진교;고영호
    • 한국응용곤충학회지
    • /
    • 제56권4호
    • /
    • pp.371-376
    • /
    • 2017
  • 풀무치의 전국적인 발생현황 및 밀도조사의 결과, 한국에서는 전라남도 해남군 산이면과 전라남도 무안군 망운면 간척지에서 2015년 이후 지속적으로 높은 밀도의 발생이 관찰되었다. 우리는 두 지점에서 발생하는 풀무치의 기원을 알아내기 위하여 NADH dehydrogenase subunit (NAD) 2, NAD4 와 NAD5의 염기서열을 분석하였다. 그 결과 해남풀무치의 경우는 중국동북부의 Liaoning성 과 Heilongjiang성 개체군과 기원이 비슷하고, 무안풀무치의 경우는 일본풀무치와 기원이 비슷하다는 결론에 도달했다. 이전의 전 세계적인 풀무치의 진화에 관한 연구에서 한국의 풀무치가 포함이 되지 않아서 한반도 풀무치의 기원은 알 수 없었다. 본 연구의 결과는 중국북동부 지방에서 8만 년 전에 분리된 풀무치 중 일부가 한반도로 이동을 하여 해남 지역에 정착을 하고 일부는 러시아 사할린과 일본 홋카이도섬을 거쳐서 무안으로 이동하였을 가능성을 보여주고 있다. 하지만, 한반도로 내려온 풀무치가 해남과 무안계통으로 분리된 후 일본으로 이동하였을 가능성도 배제할 수 없다.

한국산 연어의 미토콘드리아 NADH Dehydrogengse Subunit 3 영역의 클로닝 및 DNA 염기서열 분석 (Cloning and DNA Sequences Anaylsis of Mitochondrial NADH Dehydrogenase Subunit 3 from Korean Chum Salmon, Oncorhynchus keta)

  • 최윤실;이윤호;진덕희
    • 한국수산과학회지
    • /
    • 제36권2호
    • /
    • pp.94-99
    • /
    • 2003
  • Mitochondrial DNAs has been used frequently as genetic markers for the population genetic studies of salmonid fishes. Samples used in this experiment were chum salmons (Oncorhynchus keta) from Korea. We analyzed variation of mitochondrial NADH dehydrogenase subunit 3 gene (ND3) among 4 individuals of the Korea population. Genomic DNA was extracted from the liver of the chum salmon samples. Then, the ND3 gene was amplified by polymerase chain reaction (PCR) including the 3' region of cytochrome oxidase III gene (COIII) and the 5` region of NADH dehydrogenase subunit 4L gene (ND4L). The size of the PCR product was 752 Up and the sequences showed some genetic variation among those four individuals. Genetic variations were observed in 7 sites as single nucleotide polymorphism (SNP). Within the open reading frame of the ND3 gene which encodes 116 amino acids, 5 nucleotide substitutions were found. Both transitional and transversional changes occurred more frequently with transitional changes. Comparison of these sequences with the others of a Japanese chum salmon in GenBank showed 5 sites of SNPs. This study provided the basic information of SNP in ND3 gene among Korean chum salmons and demonstrated the possible use of the SNP data as a genetic marker.

Chemical Modification of Brain Glutamate Dehydrogenase Isoproteins with Phenylglyoxal

  • Ahn, Jee-Yin;Cho, Eun-Hee;Lee, Kil-Soo;Choi, Soo-Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제32권5호
    • /
    • pp.515-520
    • /
    • 1999
  • Incubation of two types of glutamate dehydrogenase isoproteins from bovine brain with the arginine-specific dicarbonyl reagent phenylglyoxal resulted in a biphasic loss of enzyme activity. Reaction of the glutamate dehydrogenase isoproteins with phenylglyoxal caused a rapid loss of 53~62% of the enzyme activities and modification of two residues of arginine per enzyme subunit. Prolonged incubation of the glutamate dehydrogenase isoproteins with phenylglyoxal resulted in the modification of an additional four residues of arginine per enzyme subunit without further loss of the residual activities. Partial protection against inactivation was provided by the coenzyme NADH or substrate 2-oxoglutarate. The most marked decrease in the rate of inactivation was observed by the combined addition of NADH and 2-oxoglutarate, suggesting that the first two modified arginine residues are in the vicinity of the catalytic site. However, inactivation of the glutamate dehydrogenase isoproteins by phenylglyoxal appears to be partial with approximately 40% activity remained after an extended reaction time with excess reagent, suggesting that the modified arginine residues may not be directly involved in catalysis. The lack of complete protection by substrates also suggest the possibility that the modified arginine residues are not directly involved at the active site, and the partial loss of activity by the modification of arginine residues may be due to a conformational change. There were no significant differences between the two glutamate dehydrogenase isoproteins in sensitivities to inactivation by phenylglyoxal, indicating that the microenvironmental structures of the glutamate dehydrogenase isoproteins are very similar to each other.

  • PDF

Effects of Alanine and Glutamine on Alcohol Oxidation and Urea Nitrogen Production in Perfused Rat Liver

  • Yim, Jungeun;Chyun, Jonghee;Cha, Youngnam
    • Nutritional Sciences
    • /
    • 제6권4호
    • /
    • pp.189-194
    • /
    • 2003
  • Most of the ethyl alcohol consumed by humans is oxidized to acetaldehyde in the liver by the cytoplasmic alcohol dehydrogenase (ADH) system. For this ADH-catalyzed oxidation of alcohol, $NAD^+$ is required as the coenzyme and $NAD^+$becomes reduced to NADH. As the $NAD^+$becomes depleted and NADH accumulates, alcohol oxidation is reduced. For continued alcohol oxidation, the accumulated NADH must be quickly reoxidized to $NAD^+$, and it is this reoxidation of NADH to $NAD^+$that is known to be the rate-limiting step in the overall oxidation rate of alcohol The reoxidation of NADH to $NAD^+$is catalyzed by lactate dehydrogenase in the cytoplasm of hepatocytes, with pyruvate being utilized as the substrate. The pyruvate may be supplied from alanine as a result of amino acid metabolism via the urea cycle. Also, glutamine is thought to help with the supply of pyruvate indirectly, and to activate the urea cycle by producing $NH_3$. Thus, in the present study, we have examined the effects of alanine and glutamine on the alcohol oxidation rate. We utilized isolated perfused liver tissue in a system where media containing alanine and glutamine was circulated. Our results showed that when alanine (5.0mM) was added to the glucose-free infusion media, the alcohol oxidation rate was increased by 130%. Furthermore, when both glutamine and alanine were added together to the infusion media, the alcohol oxidation rate increased by as much as 190%, and the rate of urea nitrogen production increased by up to 200%. The addition of glutamine (5.0mM) alone to the infusion media did not accelerate the alcohol oxidation rate. The increases in the rates of alcohol oxidation and urea nitrogen production through the addition of alanine and glutamine indicate that these amino acids have contributed to the enhanced supply of pyruvate through the urea cycle. Based on these results, it is concluded that the dietary supplementation of alanine and glutamine could contribute to increased alcohol detoxification through the urea cycle, by enhancing the supply of pyruvate and $NAD^+$to ensure accelerated rates of alcohol oxidation.

금속이 첨가된 탄소전극의 전기화학적 특성과 이를 이용한 L-lactate 바이오센서의 개발 (Electrocatalytic Properties of Metal-dispersed Carbon Paste Electrodes for Reagentless L-lactate Biosensors)

  • 윤현철;김학성
    • KSBB Journal
    • /
    • 제11권4호
    • /
    • pp.489-496
    • /
    • 1996
  • Carbon paste electrode를 채용함으로써 L-lac tate 측정용의 전기화학식 바이오센서를 성공적으로 개발할 수 있었다. 특히 뛰어난 electrocatalytic activity를 갖는 platinum이 첨가된 platinum-CPE 를 이용하여 낮은 전위에서의 NADH의 전기척 산 화가 가능하였다. Enzyme (lactate dehydrogen­a ase)과 $NAD^+$를 carbon paste형식으로 직접 제조 함으로써 L-lactate 측정을 위한 성공적인 바이요센 서의 개발이 가능하였다. 위와 같은 개발연구를 통 하여 다른 $NAD^+$ -dependent dehydrogenase를 채 용한 바이오센서로의 적용이 기대된다.

  • PDF

The Kinetic Characteristics of K228G Mutant Horse Liver Alcohol Dehydrogenase

  • Cho, Sun-Hyoung;Ryu, Ji-Won;Lee, Kang-Man
    • Archives of Pharmacal Research
    • /
    • 제22권1호
    • /
    • pp.13-17
    • /
    • 1999
  • The kinetic constants and the reaction mechanism of the K228G mutant horse liver alcohol dehyrogenase isoenzyme E (HLADH-E) were compared to the wild-type enzyme. All the Km and Ki constants of the mutant enzyme for NAD+, ethanol, acetaldehyde and NADH were larger than those of the wild-type enzyme. The dissociation constants for the NADH and $NAD^{+}$ (Kiq and Kia) were greatly increased by 130-and 460-fold, respectively. The product inhibition patterns suggested that the reaction mechanism of the mutant enzyme was changed to Random Bi Bi. These results could attribute to the increase in the dissociation rate of coenzyme with the substitution at Lys-228 residue.

  • PDF