Browse > Article

Formate Decarboxylation: Initial Step for Hydrogen Production by Enterobacter aerogenes  

Choi, Jinyoung (Department of Chemical and Biomolecular Engineering, Yonsei University)
Jho, Young Choong (Department of Chemical and Biomolecular Engineering, Yonsei University)
Ahn, Ik-Sung (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Applied Chemistry for Engineering / v.20, no.4, 2009 , pp. 449-452 More about this Journal
Abstract
The absence of Fe, Se, and Mo in a minimal medium prevented the production of hydrogen from the anaerobic culture of Escherichia coli MC4100. Fe, Se, and Mo are known to be cofactors of formate dehydrogenase ($FDH_{II}$) of both E. coli and Enterobacter aerogenes. Hence when these trace elements are absent in the minimal medium, hydrogen production through formate dehydrogenation would be inhibited not only in E. coli but also in E. aerogenes. Hydrogen production by E. aerogenes 413 was delayed when lacking these trace elements. Therefore, it is believed that hydrogen production of E. aerogenes is initiated not by the reoxidation of nicotinamide adenine dinucleotide (NADH) but by formate decarboxylation.
Keywords
hydrogen production; formate dehydrogenase; NADH; Escherichia coli; Enterobacter aerogenes;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 P. C. Hallenbeck and J. R. Benemann, Int. J. Hydrogen Energy, 27, 1185 (2002)   DOI   ScienceOn
2 J. Pinsent, Biochem. J., 57, 10 (1954)   DOI
3 H. Gest and H. D. Peck, Jr., J. Bacteriol., 70, 326 (1955)
4 D. W. Penfold, C. F. Forster, and L. E. Macaskie, Enzyme Microb. Technol., 33, 185 (2003)   DOI   ScienceOn
5 D. Das and T. N. Veziroglu, Int. J. Hydrogen Energy, 26, 13 (2001)   DOI   ScienceOn
6 S. Tanisho, N. Kamiya, and N. Wakao, Biochim. Biophys. Acta., 973, 1 (1989)   DOI   ScienceOn
7 J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual. 2nd ed., 1, Cold Spring Harbor laboratory press, New York (1989)
8 F. Mat-Jan, Y. A. Kiswar, and D. P. Clark, J. Bacteriol., 171, 342 (1989)   DOI
9 G. Gottschalk, Bacterial metabolism, 2nd ed., 152, Springer-Verlag, New York (1986)
10 A. M. Klibanov, B. N. Alberti, and S. E. Zale, Biotechnol. Bioeng., 24, 25 (1982)   DOI   PUBMED
11 T. Kurokawa and S. Tanisho, Mar. Biotechnol., 7, 112 (2005)   DOI   ScienceOn
12 K. Hassmann and H.-M. Kuhne, Int. J. Hydrogen Energy, 18, 635 (1993)   DOI   ScienceOn
13 S. Tanisho and Y. Ishiwata, Int. J. Hydrogen Energy, 20, 541 (1995)   DOI   ScienceOn
14 Y. K. Oh, M. S. Park, E. H. Seol, S. J. Lee, and S. H. Park, Biotechnol. Bioprocess Eng., 8, 54 (2003)   과학기술학회마을   DOI   ScienceOn
15 D. P. Clark, FEMS Microbiol. Rev., 63, 223 (1989)   DOI   PUBMED   ScienceOn
16 Y. Suzuki, Int. J. Hydrogen Energy, 7, 227 (1982)   DOI   ScienceOn
17 M. A. Rachman, Y. Furutani, Y. Nakashimada, T. Kakizono, and N. Nishio, J. Ferment. Bioeng., 83, 358 (1997)   DOI   ScienceOn
18 S. Tanisho and Y. Ishiwata, Int. J. Hydrogen Energy, 19, 807 (1994)   DOI   ScienceOn
19 F. C. Neidhardt, Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., 262, ASM Press, Washington DC (1996)
20 R. Nandi and S. Sengupta, Crit. Rev. Microbiol., 24, 61 (1998)   DOI   ScienceOn
21 Y. K. Oh, Y. J. Kim, J. Y. Park, T. H. Lee, M. S. Kim, and S. H. Park, Biotechnol. Bioprocess Eng., 10, 270 (2005)   과학기술학회마을   DOI   ScienceOn
22 G. Sawers, Antonie van Leeuwenhoek, 66, 57 (1994)   DOI   ScienceOn
23 J. O'M Bockris, Int. J. Hydrogen Energy, 6, 223 (1981)   DOI   ScienceOn