Formate Decarboxylation: Initial Step for Hydrogen Production by Enterobacter aerogenes

Enterobacter aerogenes에 의한 수소 생산 초기 단계인 포메이트 탈카복시 반응 연구

  • Choi, Jinyoung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Jho, Young Choong (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ahn, Ik-Sung (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 최진영 (연세대학교 화공생명공학과) ;
  • 조영충 (연세대학교 화공생명공학과) ;
  • 안익성 (연세대학교 화공생명공학과)
  • Received : 2009.06.24
  • Accepted : 2009.07.13
  • Published : 2009.08.10

Abstract

The absence of Fe, Se, and Mo in a minimal medium prevented the production of hydrogen from the anaerobic culture of Escherichia coli MC4100. Fe, Se, and Mo are known to be cofactors of formate dehydrogenase ($FDH_{II}$) of both E. coli and Enterobacter aerogenes. Hence when these trace elements are absent in the minimal medium, hydrogen production through formate dehydrogenation would be inhibited not only in E. coli but also in E. aerogenes. Hydrogen production by E. aerogenes 413 was delayed when lacking these trace elements. Therefore, it is believed that hydrogen production of E. aerogenes is initiated not by the reoxidation of nicotinamide adenine dinucleotide (NADH) but by formate decarboxylation.

철,셀레늄,그리고 몰리브데늄이 결여되어 있는 최소배지는 Escherichia coli MC4100의 혐기성 배양에서의 수소생산을 억제하였다. 철, 셀레늄, 그리고 몰리브데늄은 대장균과 Enterobacter 모두의 formate dehydrogenase ($FDH_{II}$) 효소의 보조인자로 알려져 있다.그러므로 이러한 미량성분들이 최소배지에 결여되어 있을 때는 $FDH_{II}$를 통한 수소생산이 대장균 뿐만 아니라 E. aerogenes에서도 저해될 것이다. 이러한 성분들이 부족할 때 E. aerogenes 413에 의한 수소 생산은 지연되었다.그러므로,E. aerogenes에 의한 수소 생산은 NADH의 재산화가 아닌 포메이트 탈카복시 반응에 의해서 시작된다고 사료된다.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. P. C. Hallenbeck and J. R. Benemann, Int. J. Hydrogen Energy, 27, 1185 (2002) https://doi.org/10.1016/S0360-3199(02)00131-3
  2. R. Nandi and S. Sengupta, Crit. Rev. Microbiol., 24, 61 (1998) https://doi.org/10.1080/10408419891294181
  3. Y. Suzuki, Int. J. Hydrogen Energy, 7, 227 (1982) https://doi.org/10.1016/0360-3199(82)90085-4
  4. J. O'M Bockris, Int. J. Hydrogen Energy, 6, 223 (1981) https://doi.org/10.1016/0360-3199(81)90041-0
  5. D. Das and T. N. Veziroglu, Int. J. Hydrogen Energy, 26, 13 (2001) https://doi.org/10.1016/S0360-3199(00)00058-6
  6. Y. K. Oh, M. S. Park, E. H. Seol, S. J. Lee, and S. H. Park, Biotechnol. Bioprocess Eng., 8, 54 (2003) https://doi.org/10.1007/BF02932899
  7. Y. K. Oh, Y. J. Kim, J. Y. Park, T. H. Lee, M. S. Kim, and S. H. Park, Biotechnol. Bioprocess Eng., 10, 270 (2005) https://doi.org/10.1007/BF02932024
  8. K. Hassmann and H.-M. Kuhne, Int. J. Hydrogen Energy, 18, 635 (1993) https://doi.org/10.1016/0360-3199(93)90115-Q
  9. M. A. Rachman, Y. Furutani, Y. Nakashimada, T. Kakizono, and N. Nishio, J. Ferment. Bioeng., 83, 358 (1997) https://doi.org/10.1016/S0922-338X(97)80142-0
  10. F. C. Neidhardt, Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., 262, ASM Press, Washington DC (1996)
  11. G. Gottschalk, Bacterial metabolism, 2nd ed., 152, Springer-Verlag, New York (1986)
  12. S. Tanisho and Y. Ishiwata, Int. J. Hydrogen Energy, 20, 541 (1995) https://doi.org/10.1016/0360-3199(94)00101-5
  13. G. Sawers, Antonie van Leeuwenhoek, 66, 57 (1994) https://doi.org/10.1007/BF00871633
  14. D. P. Clark, FEMS Microbiol. Rev., 63, 223 (1989) https://doi.org/10.1016/0168-6445(89)90033-8
  15. J. Pinsent, Biochem. J., 57, 10 (1954) https://doi.org/10.1042/bj0570010
  16. H. Gest and H. D. Peck, Jr., J. Bacteriol., 70, 326 (1955)
  17. S. Tanisho, N. Kamiya, and N. Wakao, Biochim. Biophys. Acta., 973, 1 (1989) https://doi.org/10.1016/S0005-2728(89)80393-7
  18. S. Tanisho and Y. Ishiwata, Int. J. Hydrogen Energy, 19, 807 (1994) https://doi.org/10.1016/0360-3199(94)90197-X
  19. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual. 2nd ed., 1, Cold Spring Harbor laboratory press, New York (1989)
  20. F. Mat-Jan, Y. A. Kiswar, and D. P. Clark, J. Bacteriol., 171, 342 (1989) https://doi.org/10.1128/jb.171.1.342-348.1989
  21. D. W. Penfold, C. F. Forster, and L. E. Macaskie, Enzyme Microb. Technol., 33, 185 (2003) https://doi.org/10.1016/S0141-0229(03)00115-7
  22. A. M. Klibanov, B. N. Alberti, and S. E. Zale, Biotechnol. Bioeng., 24, 25 (1982) https://doi.org/10.1002/bit.260240104
  23. T. Kurokawa and S. Tanisho, Mar. Biotechnol., 7, 112 (2005) https://doi.org/10.1007/s10126-004-3088-z