• Title/Summary/Keyword: N-methyl-D-aspartate receptor

Search Result 118, Processing Time 0.028 seconds

Effects of Nefopam on Streptozotocin-Induced Diabetic Neuropathic Pain in Rats

  • Nam, Jae Sik;Cheong, Yu Seon;Karm, Myong Hwan;Ahn, Ho Soo;Sim, Ji Hoon;Kim, Jin Sun;Choi, Seong Soo;Leem, Jeong Gil
    • The Korean Journal of Pain
    • /
    • v.27 no.4
    • /
    • pp.326-333
    • /
    • 2014
  • Background: Nefopam is a centrally acting non-opioid analgesic agent. Its analgesic properties may be related to the inhibitions of monoamine reuptake and the N-methyl-D-aspartate (NMDA) receptor. The antinociceptive effect of nefopam has been shown in animal models of acute and chronic pain and in humans. However, the effect of nefopam on diabetic neuropathic pain is unclear. Therefore, we investigated the preventive effect of nefopam on diabetic neuropathic pain induced by streptozotocin (STZ) in rats. Methods: Pretreatment with nefopam (30 mg/kg) was performed intraperitoneally 30 min prior to an intraperitoneal injection of STZ (60 mg/kg). Mechanical and cold allodynia were tested before, and 1 to 4 weeks after drug administration. Thermal hyperalgesia was also investigated. In addition, the transient receptor potential ankyrin 1 (TRPA1) and TRP melastatin 8 (TRPM8) expression levels in the dorsal root ganglion (DRG) were evaluated. Results: Pretreatment with nefopam significantly inhibited STZ-induced mechanical and cold allodynia, but not thermal hyperalgesia. The STZ injection increased TRPM8, but not TRPA1, expression levels in DRG neurons. Pretreatment with nefopam decreased STZ-induced TRPM8 expression levels in the DRG. Conclusions: These results demonstrate that a nefopam pretreatment has strong antiallodynic effects on STZ-induced diabetic rats, which may be associated with TRPM8 located in the DRG.

Inactivation of Brain Glutamate Dehydrogenase Isoproteins by MDL 29951

  • Lee, Eun-Young;Yoon, Hye-Young;Kim, Tae-Ue;Choi, Soo-Young;Won, Moo-Ho;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.268-273
    • /
    • 2001
  • In addition to the recognition site for glutamate, the N-methyl-D-aspartate (NMDA)-preferring glutamate receptor subtype shows a binding site for glycine. In this paper, we present the effects of 3-(4,6-dichloro-2-carboxymethylamino-5,7-dichloroquinoline-2-carboxylic acid (MDL 29951), a potent inhibitor of glycine binding to the NMDA receptor, on glutamate dehydrogenase (GDH) from bovine brains. The incubation of GDH isoproteins from bovine brains with MDL 29951 resulted in a dose-dependent loss of enzyme activity Separately or together, 2-oxoglutarate and NADH did not give an efficient protection against the inhibition, indicating that GDH isoproteins saturated with NADH or 2-oxoglutarate are still open to attack by MDL 29951. MDL 29951 was an uncompetitive inhibitor with respect to both 2-oxoglutarate and NADH for GDH isoproteins. These results suggest that the binding site of MDL 29951 is not directly located at the catalytic site, and the inhibition of GDH isoproteins by MDL 29951 is probably due to a steric hindrance, or a conformational change altered upon the interaction of the enzyme with its inhibitor. The inhibitory effects of MDL 29951 on GDH isoproteins were significantly diminished in the presence of ADP. GDH I reacted more sensitively with ADP than GDH II on the inhibition by MDL 29951. Our results suggest a possibility that the two types of GDHs are differently regulated by MDL 29951, depending on the physiological concentrations of ADP.

  • PDF

Molecular Biologic Study on the Role of Glutamate in Spinal Sensitization (척수통증과민반응에서 Glutamate의 역할에 대한 분자생물학적 연구)

  • Kim, Hae-Kyu;Jung, Jin-Sup;Baik, Seong-Wan
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • Background: Subcutaneous injection of 5% formalin into the hind paw of the rat produces a biphasic nociceptive response. The second phase depends on changes in the dorsal horn cell function that occur shortly after an initial C-fiber discharge, spinal sensitization, or windup phenomenon. This study was performed to investigate the role of glutamate during spinal sensitization. Methods: Sprague-Dawley rats weighing 200 to 250 g were used for this study. Under light anesthesia (0.5% isoflurane) the rats were segregated in a specially designed cage and $50{\mu}l$ 0.5% formalin was injected subcutaneously in the foot dorsum of right hindlimb. Forty minutes after the formalin injection, the rat was quickly decapitated and spinal cord was removed. The spinal segments at the level of L3 (largest area) was collected and stored in a deep freezer ($-70^{\circ}C$). The mRNA gene expression of N-methyl-D-aspartate receptor (NMDAR) and the metabotropic glutamate receptor subtype 5 (mGluR5) were determined by the polymerase chain reaction. Results: The number of flinches was $19.8{\pm}2.3/min$. at one minute after formalin injection and decreased to zero after then. The second peak appeared at 35 and 40 minutes after formalin injection. The values were $17.8{\pm}2.2$ and $17.2{\pm}3.0/min$. The mRNA gene expressions of NMDAR and mGluR5 were increased by $459.0{\pm}46.8%$ (P < 0.01) and $111.1{\pm}4.8%$ (P > 0.05) respectively at 40 minutes after formalin injection. The increased rate of NMDAR was significantly higher than that of mGluR5 (P < 0.01). Conclusions: From these results it suggested that NMDAR partly contributed to the mechanism of central sensitization after the formalin test but mGluR5 did not.

  • PDF

Developmental Switch of the Serotonergic Role in the Induction of Synaptic Long-term Potentiation in the Rat Visual Cortex

  • Park, Sung-Won;Jang, Hyun-Jong;Cho, Kwang-Hyun;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.65-70
    • /
    • 2012
  • Synaptic long-term potentiation (LTP) and long-term depression (LTD) have been studied as mechanisms of ocular dominance plasticity in the rat visual cortex. Serotonin (5-hydroxytryptamine, 5-HT) inhibits the induction of LTP and LTD during the critical period of the rat visual cortex (postnatal 3~5 weeks). However, in adult rats, the increase in 5-HT level in the brain by the administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine reinstates ocular dominance plasticity and LTP in the visual cortex. Here, we investigated the effect of 5-HT on the induction of LTP in the visual cortex obtained from 3- to 10-week-old rats. Field potentials in layer 2/3, evoked by the stimulation of underlying layer 4, was potentiated by theta-burst stimulation (TBS) in 3- and 5-weekold rats, then declined to the baseline level with aging to 10 weeks. Whereas 5-HT inhibited the induction of LTP in 5-week-old rats, it reinstated the induction of N-methyl-D-aspartate receptor (NMDA)-dependent LTP in 8- and 10-week-old rats. Moreover, the selective SSRI citalopram reinstated LTP. The potentiating effect of 5-HT at 8 weeks of age was mediated by the activation of 5-$HT_2$ receptors, but not by the activation of either 5-$HT_{1A}$ or 5-$HT_3$ receptors. These results suggested that the effect of 5-HT on the induction of LTP switches from inhibitory in young rats to facilitatory in adult rats.

Oxygen/Glucose Deprivation and Reperfusion Cause Modifications of Postsynaptic Morphology and Activity in the CA3 Area of Organotypic Hippocampal Slice Cultures

  • Jung, Yeon Joo;Suh, Eun Cheng;Lee, Kyung Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.423-429
    • /
    • 2012
  • Brain ischemia leads to overstimulation of N-methyl-D-aspartate (NMDA) receptors, referred as excitotoxicity, which mediates neuronal cell death. However, less attention has been paid to changes in synaptic activity and morphology that could have an important impact on cell function and survival following ischemic insult. In this study, we investigated the effects of reperfusion after oxygen/glucose deprivation (OGD) not only upon neuronal cell death, but also on ultrastructural and biochemical characteristics of postsynaptic density (PSD) protein, in the stratum lucidum of the CA3 area in organotypic hippocampal slice cultures. After OGD/reperfusion, neurons were found to be damaged; the organelles such as mitochondria, endoplasmic reticulum, dendrites, and synaptic terminals were swollen; and the PSD became thicker and irregular. Ethanolic phosphotungstic acid staining showed that the density of PSD was significantly decreased, and the thickness and length of the PSD were significantly increased in the OGD/reperfusion group compared to the control. The levels of PSD proteins, including PSD-95, NMDA receptor 1, NMDA receptor 2B, and calcium/calmodulin-dependent protein kinase II, were significantly decreased following OGD/reperfusion. These results suggest that OGD/reperfusion induces significant modifications to PSDs in the CA3 area of organotypic hippocampal slice cultures, both morphologically and biochemically, and this may contribute to neuronal cell death and synaptic dysfunction after OGD/reperfusion.

Effects of Pilocarpine and Kainic Acid on EEG and Behavior Activity in Freely Behaving Rats

  • Choi, Byung-Ju;Cho, Jin-Hwa;Lee, Maangee-G.
    • Biomolecules & Therapeutics
    • /
    • v.4 no.2
    • /
    • pp.167-173
    • /
    • 1996
  • This study was undertaken to evaluate a behavior-electroencephalogram (EEG) pattern relationship in pilocarpine- and kainic acid-induced convulsions of rats. Also we intended to examine the effect of a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, and diazepam on the pilocarpine-induced behavioral and electrical seizures in rats. The electrical activities at frontal and hippocampal areas and behavior activities were measured in freely moving rats. At the beginning of the experiments, the rats displayed an exploratory behavior. This awake and moving phase with a low amplitude, irregular, 4-10 Hz wave was followed by a still phase. Pilocarpine (400 mg/kg, i.p.) and kainic acid (0.5 mg/kg, i.c.v.) induced tonic and clonic seizures. The pilocarpine-induced change in electrical activities exhibited a weak correlation with behavioral convulsion at all stages. The amplitude and duration of the electrical response were not linear with the degree of behavioral score. An application of MK-801 (dizocilpine, 7.5 mg/kg) did not affect the amplitudes of the convulsant-induced electrical activities, though the same dose of this drug caused the deformation of the electrical pattern. There was no effect of MK-801 on the behavioral and electrical activities as expected. Diazepam (1 mg/kg) did not affect the amplitude of the electrical activities induced by pilocarpine but changed the pattern of these activities. Our study shows that there is no linear relationship between degree of behavior and amplitude of electrical activities of convulsants. This may indicate that the NMDA receptor stimulation can be processed by the neocortical or hippocampal network in a different way between behavioral and electrical activities.

  • PDF

Biflorin Ameliorates Memory Impairments Induced by Cholinergic Blockade in Mice

  • Jeon, Se Jin;Kim, Boseong;Ryu, Byeol;Kim, Eunji;Lee, Sunhee;Jang, Dae Sik;Ryu, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.249-258
    • /
    • 2017
  • To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and increased exploration time in the Morris water maze task, indicating the improvement of cognitive behaviors against cholinergic dysfunction. The biflorin-induced reverse of latency in the scopolamine-treated group was attenuated by MK-801, an NMDA receptor antagonist. Biflorin also enhanced cognitive function in a naïve mouse model. To understand the mechanism of biflorin for memory amelioration, we performed Western blot. Biflorin increased the activation of protein kinase C-${\zeta}$ and its downstream signaling molecules in the hippocampus. These results suggest that biflorin ameliorates drug-induced memory impairment by modulation of protein kinase C-${\zeta}$ signaling in mice, implying that biflorin could function as a possible therapeutic agent for the treatment of cognitive problems.

Experimental Study Trends on the Acupuncture Moxibustion Treatment for Visceral Hypersensitivity: Based on the Data of PubMed (내장감각과민의 침구 치료에 대한 실험연구 현황: PubMed를 중심으로)

  • Han, Chang Woo;Choi, Jun-Yong;Park, Seong Ha;Kim, So Yeon
    • Korean Journal of Acupuncture
    • /
    • v.36 no.2
    • /
    • pp.93-103
    • /
    • 2019
  • Objectives : The aim of this study is to review the current trends in experimental studies on the acupuncture moxibustion treatment for visceral hypersensitivity. Methods : PubMed was searched for experimental studies about visceral hypersensitivity and acupuncture/moxibustion. Data were extracted and tabulated from the selected articles about experimental method, intervention, result and mechanism. Results : Total 23 articles were reviewed. Chronic visceral hypersensitivity animal model was applied in 17 studies (74%). Visceral hypersensitivity was measured by abdominal withdrawal reflex scoring or/and abdominal electromyogram. Acupoints like ST25, ST36, ST37, BL25, LI11, BL32 and PC6 were treated by electroacupuncture or moxibustion. All articles reported that electroacupuncture or moxibustion treatment is significantly effective in reducing visceral hypersensitivity. Treatment mechanisms were studied, related to mast cell, serotonin (5-HT) and receptor (5-HT3R and 5-HT4R), substance P (SP), vasoactive intestinal polypeptide (VIP), c-fos positive cell, corticotropin-releasing hormone (CRH), purinergic 2X (P2X)2, P2X3, P2X4, P2X7, N-methyl-D-aspartate (NMDA) receptor (NR1 and NR2B), prokinectin (PK) 1 and PK2. Conclusions : Evidences on acupuncture/moxibustion treatment for visceral hypersensitivity in animal studies warrant more research on effective acupoins, electro-acupuncture methods and treatment durations.

Effect of MK-801 on Methamphetamine-Induced Dopaminergic Neurotoxicity: Long-Term Attenuation of Methamphetamine-Induced Dopamine Release (MK-801이 메트암페타민에 의한 도파민 신경독성에 미치는 효과: 메트암페타민에 의한 도파민 유리의 장기간 억제)

  • Kim, Sang-Eun;Kim, Yu-Ri;Hwang, Se-Hwan
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.4
    • /
    • pp.258-267
    • /
    • 2001
  • Purpose/Methods: Repeated administration of methamphetamine (METH) produces high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. The effect of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, on METH-induced changes in DA transporter (DAT) and DA release evoked by an acute METH challenge was evaluated in rodent striatum uslng $[^3H]$]WIN 38,428 ex vivo auto-radiography and in vivo microdialysis. Results: Four injections of METH (10 mg/kg, i.p.), each given 2 h apart, produced 71% decrease in DAT levels in mouse striatum 3 d after administration. Pretreatment with MK-801 (2.5 mg/kg, i.p.) 15 min before each of the four METH injections protected completely against striatal DAT depletions. Four injections of MK-801 alone did not significantly change striatal DAT levels. Striatal DA release evoked by an acute METH challenge (4 mg/kg, i.p.) at 3 d after repeated administration of METH in rats was decreased but significant compared with controls, which was attenuated by repeated pretreatment with MK-801. Also, repeated injections of MK-801 alone attenuated acute METH-induced striatal DA release 3 d after administration. Conclusion: These results suggest that repeated administration of MK-801 may exert a preventive effect against METH-induced DA terminal injury through long-term attenuation of DA release induced by METH and other stimuli.

  • PDF

Effects of Electroacupucture on NMDA Receptor-dependent Spinal ERK MAPK Expression in CFA-induced Pain Model (전침에 의한 CFA유발 통증모델의 NMDA 수용체 의존적 ERK MAPK 발현 변화)

  • Kim, Ha-Neui;Kim, Yu-Ri;Jang, Ji-Yeon;Choi, Yung-Hyun;Lee, Yong-Tae;Choi, Byung-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.983-988
    • /
    • 2010
  • The present study aims to investigate a possible mechanism of electroacupuncture (EA) in the spinal dorsal horn that may underlie N-methyl-D-aspartate (NMDA) receptor-associated extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathways. The hot plate latency of the ipsilateral hindpaw of EA-treated rats was significantly decreased compared with complete Freund's adjuvant (CFA)-injected ones. The expressions of NR1 and NR2B subuint mRNA of NMDA receptor in the whole L4-5 segments are decreased by CFA treatment, but NR2B subunit was significantly recovered by EA treatment. When we detected the expression of ERK, there were no significant difference between normal and CFA-treated rats with EA or NMDA receptor antagonist MK801. But phosphorylated ERK expressions were markedly induced by CFA, but these inductions were significantly modulated by EA treatment. Although hosphorylation of ERK was also arrested by MK801, these inductions of CFA-injected rats was markedly inhibited only by co-treatment with EA and MK801. Phosphorylated cAMP response element-binding protein (CREB), ERK-related transcriptional factor, showed a significant increase in CFA-treated rats and this increase was slightly inhibited by EA and MK801 treatments. But immunoreaction for phosphorylated CREB were significantly increased by CFA treatment in the superficial laminae of the dorsal horn and these inductions were significantly arrested by co-treatment of EA and MK801. Consequently, the hyperalgesia induced by CFA are associated NMDA receptor and EA and MK801 may showed anti-hyperalgesia via same mechanism for inhibition of ERK and CREB phosphorylation in the dorsal horn.