• Title/Summary/Keyword: N-Acetyl-Glucosamine

Search Result 74, Processing Time 0.032 seconds

Classification, Structure, and Bioactive Functions of Oligosaccharides in Milk

  • Mijan, Mohammad Al;Lee, Yun-Kyung;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.631-640
    • /
    • 2011
  • Milk oligosaccharides are the complex mixture of six monosaccharides namely, D-glucose, D-galactose, N-acetyl-glucosamine, N-acetyl-galactosamine, L-fucose, and N-acetyl-neuraminic acid. The mixture is categorized as neutral and acidic classes. Previously, 25 oligosaccharides in bovine milk and 115 oligosaccharides in human milk have been characterized. Because human intestine lacks the enzyme to hydrolyze the oligosaccharide structures, these substances can reach the colon without degradation and are known to have many health beneficial functions. It has been shown that this fraction of carbohydrate can increase the bifidobacterial population in the intestine and colon, resulting in a significant reduction of pathogenic bacteria. The role of milk oligosaccharides as a barrier against pathogens binding to the cell surface has recently been demonstrated. Milk oligosaccharides have the potential to produce immuno-modulation effects. It is also well known that oligosaccharides in milk have a significant influence on intestinal mineral absorption and in the formation of the brain and central nervous system. Due to its structural resemblance, bovine milk is considered to be the most potential source of oligosaccharides to produce the same effect of oligosaccharides present in human milk. This review describes the characteristics and potential health benefits of milk oligosaccharides as well as the prospects of oligosaccharides in bovine milk for use in functional foods.

Comparison of Properties of Polyclonal Anti-N-Acetylchitooligosaccharides and Anti-Chitooligosaccharides Antibodies Produced for ELISA

  • Shim, Youn-Young;Shon, Dong-Hwa;Kwak, Bo-Yeon;Yu, Jae-Hoon;Chee, Kew-Mahn
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.686-692
    • /
    • 2004
  • To develop the enzyme-linked immunosorbent assay (ELISA) for the analysis of N-acetylehitooligosaccharides (NACOS) and chitooligosaccharides (COS), specific antibodies (Abs) were produced, and their properties were compared. N-acetylehitohexaose (NACOS6), chitohexaose (COS6), and COS mixture (COSM) conjugated to bovine serum albumin (BSA) were used to immunize rabbits. By the use of specific Abs and NACOS6-horseradish peroxidase (HRP), COS6-HRP, and COSM-HRP conjugates, competitive direct ELISA (cdELISA) was developed. The detection limits of NACOS6 by the anti-NACOS6 Ab and COS6 by the anti-COS6 and the anti-COSM Abs in the cdELISAs were about 0.2, 2, ana 2 ng/ml (ppb), respectively. In the cdELISA, the anti-NACOS6 Ab was found to recognize NACOS3-NACOS6, but not N-acetyl-D-glucosamine (GlcNAc), NACOS2, and COSs; the anti-COS6 Ab recognized COS2-COS6 and COSM, but not glucosamine (GlcN) and NACOSs. The recognition pattern of the anti-COSM Ab was almost the same as that of the anti- COS6 Ab, except that the former recognized COS2 and COS3 slightly better than the latter.

Lectin Histochemistry and Morphological Changes in von Ebner's Glands in Rats after Glossopharyngeal or Hypoglossal Axotomy (혀인두신경 또는 혀밑신경을 절단한 흰쥐 미각샘의 형태학적 변화와 렉틴조직화학)

  • Moon, Yong-Suk
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1541-1552
    • /
    • 2013
  • The purpose of this study was to investigate the structure and secretory function of the von Ebner's gland in parasympathetic or sympathetic nerve innervation. Sprague Dawley rats were sacrificed 3, 7, 10, 14, and 21 days after bilateral glossopharyngeal or hypoglossal nerve axotomy, respectively. The circumvallate papilla portion of the tongue was dissected and we observed morphological changes in the von Ebner's gland. The properties of glycoconjugate in the von Ebner's gland were investigated using nine biotinylated lectins (PSA, UEA I, GSL I $B_4$, ECL, DBA, SBA, HPA, SJA, or sWGA). Compared with the control group, cytoplasmic vacuoles appeared in the serous acini of the von Ebner's gland in the 3-day group, and the serous acini were significantly vacuolized and degenerated in the 10-day group after glossopharyngeal nerve axotomy. However, the structure of the von Ebner's gland did not change after hypoglossal nerve axotomy. In the control group, the von Ebner's glands secreted glycoconjugates containing ${\alpha}$-D-galactose, N-acetyl-D-galactosamine, and N-acetyl-D-glucosamine oligomer, and the amount of the secretion decreased significantly in the 10-day group after glossopharyngeal nerve axotomy. However, the amount of the glycoconjugate secretion did not change after hypoglossal nerve axotomy. Therefore, the results of this study suggest that the glossopharyngeal nerve containing parasympathetic nerve fibers is important for maintaining the structure of and secretory function in the von Ebner's gland in rats.

Effects of Diluent Component, Freezing Rate, Thawing Time and Thawing Temperature on Acrosome Morphology and Motility of Frozen-thawed Boar Sperm

  • Yi, Y.J.;Kwon, Y.A.;Ko, H.J.;Park, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1553-1558
    • /
    • 2002
  • This study was carried out to obtain informations regarding the effect of N-acetyl-D-glucosamine in the LEY (lactoseegg yolk) diluent according to incubation time in 5 ml maxi-straw and the effects of freezing rate, thawing temperature and thawing time in the LEN (lactose-egg yolk and N-acetyl-D-glucosamine) diluent on acrosome morphology and motility of frozen-thawed boar sperm. The study showed that the LEN diluent was higher post-thaw NAR (normal apical ridge) acrosome than the LEY diluent for 0.5 h incubation at 37$^{\circ}C$. However, there were no differences between the LEN and LEY diluents on post-thaw sperm motility according to incubation time. The straws frozen from 5.0 cm (20$^{\circ}C$/min) to 17.0 cm (1$^{\circ}C$/min) above the liquid nitrogen surface did not show any significant differences on post-thaw sperm motility. However, the straws frozen above 5.0 cm from the liquid nitrogen surface were higher NAR acrosome than those frozen above 17.0 cm. The post-thaw percentages of motile sperm and NAR acrosome were significantly higher (p<0.05) for the maxi-straws submerged for 40 or 45 sec in a 52$^{\circ}C$ water bath than for 30, 35, 50 or 55 sec. The mean sample temperatures of maxi-straws after 40 or 45 sec submersion were 20.7 or 26.4$^{\circ}C$. In conclusion, the sample temperature of the thawed semen was very important for post-thaw sperm survival in the LEN diluent of 5 ml maxi-straw. When the temperature of the thawed semen was 20.7$^{\circ}C$, the percentages of motile sperm and NAR acrosome were highest.

N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division

  • Sharif, Syeda Ridita;Islam, Md. Ariful;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.669-679
    • /
    • 2016
  • N-acetyl-D-glucosamine kinase (GlcNAc kinase or NAGK) primarily catalyzes phosphoryl transfer to GlcNAc during amino sugar metabolism. Recently, it was shown NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and upregulates axo-dendritic growth, which is an enzyme activity-independent, non-canonical structural role. The authors examined the distributions of NAGK and NAGK-dynein complexes during the cell cycle in HEK293T cells. NAGK was expressed throughout different stages of cell division and immunocytochemistry (ICC) showed NAGK was localized at nuclear envelope, spindle microtubules (MTs), and kinetochores (KTs). A proximity ligation assay (PLA) for NAGK and DYNLRB1 revealed NAGK-dynein complex on nuclear envelopes in prophase cells and on chromosomes in metaphase cells. NAGK-DYNLRB1 PLA followed by Lis1/NudE1 immunostaining showed NAGK-dynein complexes were colocalized with Lis1 and NudE1 signals, and PLA for NAGK-Lis1 showed similar signal patterns, suggesting a functional link between NAGK and dynein-Lis1 complex. Subsequently, NAGK-dynein complexes were found in KTs and on nuclear membranes where KTs were marked with CENP-B ICC and nuclear membrane with lamin ICC. Furthermore, knockdown of NAGK by small hairpin (sh) RNA was found to delay cell division. These results indicate that the NAGK-dynein interaction with the involvements of Lis1 and NudE1 plays an important role in prophase nuclear envelope breakdown (NEB) and metaphase MT-KT attachment during eukaryotic cell division.

N-Acetyl-D-Glucosamine Kinase Promotes the Axonal Growth of Developing Neurons

  • Islam, Md. Ariful;Sharif, Syeda Ridita;Lee, HyunSook;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.876-885
    • /
    • 2015
  • N-acetyl-D-glucosamine kinase (NAGK) plays an enzyme activity-independent, non-canonical role in the dendritogenesis of hippocampal neurons in culture. In this study, we investigated its role in axonal development. We found NAGK was distributed throughout neurons until developmental stage 3 (axonal outgrowth), and that its axonal expression remarkably decreased during stage 4 (dendritic outgrowth) and became negligible in stage 5 (mature). Immunocytochemistry (ICC) showed colocalization of NAGK with tubulin in hippocampal neurons and with Golgi in somata, dendrites, and nascent axons. A proximity ligation assay (PLA) for NAGK and Golgi marker protein followed by ICC for tubulin or dynein light chain roadblock type 1 (DYNLRB1) in stage 3 neurons showed NAGK-Golgi complex colocalized with DYNLRB1 at the tips of microtubule (MT) fibers in axonal growth cones and in somatodendritic areas. PLAs for NAGK-dynein combined with tubulin or Golgi ICC showed similar signal patterns, indicating a three way interaction between NAGK, dynein, and Golgi in growing axons. In addition, overexpression of the NAGK gene and of kinase mutant NAGK genes increased axonal lengths, and knockdown of NAGK by small hairpin (sh) RNA reduced axonal lengths; suggesting a structural role for NAGK in axonal growth. Finally, transfection of 'DYNLRB1 (74-96)', a small peptide derived from DYNLRB1's C-terminal, which binds with NAGK, resulted in neurons with shorter axons in culture. The authors suggest a NAGK-dynein-Golgi tripartite interaction in growing axons is instrumental during early axonal development.

Effect of Antimicrobial Activity by Chitosan Oligosaccharide N-Conjugated with Asparagine

  • Jeon, You-Jin;Kim, Se-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.281-286
    • /
    • 2001
  • Since the number of amino groups which are exposed by deacetylation of acetyl-D-glucosamine influences antimicrobial activity, a chitosan oligosaccharide (COS) derivative by N-conjugation of COS with asparagine, an amino acid with two amino groups, was synthesized and the antimicrobial effect on E. coli growth was compared with other COS derivatives which were N-conjugated with glycine, alanine, aspartic acid, cysteins, an methionine, and unmodified COS. The structure of asparagine N-conjugated COS (Asn-COS) derivative was identified by using a FT-IR, $^{13}C\;FT-NMR$, and an elemental analyzer. The antimicrobial activity of Asn-COS against E. coli growth was significantly improved as compared to the other COS derivatives as well as COS itself. This means that Asn-COS with two positive charges strongly interacts with the carboxyl negative charges on the bacteria cell wall. The results for Asn-COS were as follows: 100% bactericidal activity, 0.002% MIC, and no growth of E. coli during 3 days of culture time, suggesting that Asn-COS may be useful as a new antibiotic agent.

  • PDF

Antitumor Activity of Reaction Mixture of Chitin and Green Onion Extract (키틴과 파추출액 반응물의 항암 작용)

  • Kim, Yeong-Shik;Park, Kyung-Shin;Chang, Il-Moo;Hyun, Jin-Won;Park, Jae-Gahb;Park, Ho-Koon
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.579-585
    • /
    • 1994
  • Antitumor activity was tested by administration of reaction mixture of green onion extract and chitin to mice bearing sarcoma-180 cells. An intraperitoneal injection of mixture(20 mg/kg/day) to mice Have an 52% inhibition of tumor growth. Inhibition of tumor growth was found to be dose-dependent. When eighty miligrams of the mixture were administered, the weight of tumor was reduced significantly. HPLC analysis indicated the mixture was composed of N-acetyl-D-glucosamine, N-acetylchitobiose and N-acetylchitotriose.

  • PDF

Glucosamine increases macrophage lipid accumulation by regulating the mammalian target of rapamycin signaling pathway

  • Sang-Min Kim;Dong Yeol Kim;Jiwon Park;Young-Ah Moon;Inn-Oc Han
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.92-97
    • /
    • 2024
  • Elevated blood glucose is associated with an increased risk of atherosclerosis. Data from the current study showed that glucosamine (GlcN), a normal glucose metabolite of the hexosamine biosynthetic pathway (HBP), promoted lipid accumulation in RAW264.7 macrophage cells. Oleic acid- and lipopolysaccharide (LPS)-induced lipid accumulation was further enhanced by GlcN in RAW264.7 cells, although there was no a significant change in the rate of fatty acid uptake. GlcN increased acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), scavenger receptor class A, liver X receptor, and sterol regulatory element-binding protein-1c (SREBP-1c) mRNA expression, and; conversely, suppressed ATP-binding cassette transporter A1 (ABCA-1) and ABCG-1 expression. Additionally, GlcN promoted O-GlcNAcylation of nuclear SREBP-1 but did not affect its DNA binding activity. GlcN stimulated phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Rapamycin, a mTOR-specific inhibitor, suppressed GlcN-induced lipid accumulation in RAW264.7 cells. The GlcN-mediated increase in ACC and FAS mRNA was suppressed, while the decrease in ABCA-1 and ABCG-1 by GlcN was not significantly altered by rapamycin. Together, our results highlight the importance of the mTOR signaling pathway in GlcN-induced macrophage lipid accumulation and further support a potential link between mTOR and HBP signaling in lipogenesis.

A Docking Study of UDP-N-Acetylglucosamine Enolpyruvyl Transferase from Haemophilus influenzae in Complex with Inhibitors

  • Yoon, Hye-Jin;Mikami, Bunzo;Park, Hyun-Ju;Yoo, Ja-Kyung;Suh, Se-Won
    • Korean Journal of Crystallography
    • /
    • v.18 no.1_2
    • /
    • pp.10-15
    • /
    • 2007
  • UDP-N-acetylglucosamine enolpyruvyl transferase (MurA; EC 2.5.1.7) catalyzes the first committed step of peptidoglycan biosynthesis in bacteria, i.e., transfer of enolpyruvate from phosphoenolpyruvate to UDP-N-acetyl-glucosamine. Because the crystallization condition contained a high concentration of ammonium sulfate, our inhibitor binding studies were not successful. Therefore, we employed a docking approach to investigate the inhibitor binding. Our results will be useful in structure-based design of specific inhibitors of MurA for antibacterial discovery.