Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0120

N-Acetyl-D-Glucosamine Kinase Promotes the Axonal Growth of Developing Neurons  

Islam, Md. Ariful (Department of Anatomy, College of Medicine Dongguk University)
Sharif, Syeda Ridita (Department of Anatomy, College of Medicine Dongguk University)
Lee, HyunSook (Dongguk Medical Institute, College of Medicine Dongguk University)
Moon, Il Soo (Department of Anatomy, College of Medicine Dongguk University)
Abstract
N-acetyl-D-glucosamine kinase (NAGK) plays an enzyme activity-independent, non-canonical role in the dendritogenesis of hippocampal neurons in culture. In this study, we investigated its role in axonal development. We found NAGK was distributed throughout neurons until developmental stage 3 (axonal outgrowth), and that its axonal expression remarkably decreased during stage 4 (dendritic outgrowth) and became negligible in stage 5 (mature). Immunocytochemistry (ICC) showed colocalization of NAGK with tubulin in hippocampal neurons and with Golgi in somata, dendrites, and nascent axons. A proximity ligation assay (PLA) for NAGK and Golgi marker protein followed by ICC for tubulin or dynein light chain roadblock type 1 (DYNLRB1) in stage 3 neurons showed NAGK-Golgi complex colocalized with DYNLRB1 at the tips of microtubule (MT) fibers in axonal growth cones and in somatodendritic areas. PLAs for NAGK-dynein combined with tubulin or Golgi ICC showed similar signal patterns, indicating a three way interaction between NAGK, dynein, and Golgi in growing axons. In addition, overexpression of the NAGK gene and of kinase mutant NAGK genes increased axonal lengths, and knockdown of NAGK by small hairpin (sh) RNA reduced axonal lengths; suggesting a structural role for NAGK in axonal growth. Finally, transfection of 'DYNLRB1 (74-96)', a small peptide derived from DYNLRB1's C-terminal, which binds with NAGK, resulted in neurons with shorter axons in culture. The authors suggest a NAGK-dynein-Golgi tripartite interaction in growing axons is instrumental during early axonal development.
Keywords
axon; dynein; Golgi; microtubule; NAGK; neuron;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Ahmad, F.J., He, Y., Myers, K.A., Hasaka, T.P., Francis, F., Black, M.M., and Baas, P.W. (2006). Effects of dynactin disruption and dynein depletion on axonal microtubules. Traffic 7, 524-537.   DOI   ScienceOn
2 Baas, P.W., Black, M.M., and Banker, G.A. (1989). Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J. Cell Biol. 109, 3085-3094.   DOI
3 Berger, M., Chen, H., Reutter, W., and Hinderlich, S. (2002). Structure and function of N-acetylglucosamine kinase. Identification of two active site cysteines. Eur. J. Biochem. 269, 4212-4218.   DOI   ScienceOn
4 Bou-Abdallah, F., Chasteen, N.D., and Lesser, M.P. (2006). Quenching of superoxide radicals by green fluorescent protein. Biochim. Biophys. Acta 1760, 1690-1695.   DOI   ScienceOn
5 Brewer, G.J., Torricelli, J.R., Evege, E.K., and Price, P.J. (1993). Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576.   DOI   ScienceOn
6 Dotti, C.G., Sullivan, C.A., and Banker, G.A. (1988). The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454-1468.
7 Esko, J.D., and Lindahl, U. (2001). Molecular diversity of heparan sulfate. J. Clin. Invest. 108, 169-173.   DOI
8 Estrada-Bernal, A., Sanford, S.D., Sosa, L.J., Simon, G.C., Hansen, K.C., and Pfenninger, K.H. (2012). Functional complexity of the axonal growth cone: A proteomic analysis. PLoS ONE 7, e31858.   DOI
9 Gardiol, A., Racca, C., and Triller, A. (1999). Dendritic and postsynaptic protein synthetic machinery. J. Neurosci. 19, 168-179.
10 Goslin, K., and Banker, G. (1990). Rapid changes in the distribution of GAP-43 correlate with the expression of neuronal polarity during normal development and under experimental conditions. J. Cell Biol. 110, 1319-1331.   DOI   ScienceOn
11 Goslin, K., Assmussen, H., and Banker, G. (1998). Rat hippocampal neurons in low density culture. In Culturing Nerve Cells, 2nd Ed, Banker, G. and Goslin, K. eds. (Cambridge, MA: MIT Press). pp. 339-370.
12 Gunawardena, S., Her, L.S., Brusch, R.G., Laymon, R.A., Niesman, I.R., Gordesky-Gold, B., Sintasath, L., Bonini, N.M., and Goldstein, L.S. (2003). Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25-40.   DOI   ScienceOn
13 Hakomori, S. (2000). Traveling for the glycosphingolipid path. Glycoconj. J. 17, 627-647.   DOI   ScienceOn
14 Hinderlich, S., Nöhring, S., Weise, C., Franke, P., Stäsche, R., and Reutter, W. (1998). Purification and characterization of Nacetylglucosamine kinase from rat liver: comparison with UDP-Nacetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Eur. J. Biochem. 252, 133-139.   DOI   ScienceOn
15 Hinderlich, S., Berger, M., Schwarzkopf, M., Effertz, K., and Reutter, W. (2000). Molecular cloning and characterization of murine and human N-acetylglucosamine kinase. Eur. J. Biochem. 267, 3301-3308.   DOI   ScienceOn
16 Horton, A.C., and Ehlers, M.D. (2003). Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J. Neurosci. 23, 6188-6199.
17 Horton, A.C., Racz, B., Monson, E.E., Lin, A.L., Weinberg, R.J., and Ehlers, M.D. (2005). Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48, 757-771.   DOI   ScienceOn
18 Hwa, K.Y. (2001). Glycosyl phosphatidylinositol-linked glycoconjugates: structure, biosynthesis and function. Advan. Exp. Mes. Biol. 491, 207-214.   DOI
19 Islam, M.A., Sharif, S.R., Lee, H.S., Seog, D.H., and Moon, I.S. (2015). N-acetyl-D-glucosamine kinase interacts with dynein light chain roadblock type 1 at Golgi outposts in neuronal dendritic branch points. Exp. Mol. Med. 47, e177.   DOI   ScienceOn
20 Jareb, M., and Banker, G. (1997). Inhibition of axonal growth by brefeldin A in hippocampal neurons in culture. J. Neurosci. 17, 8955-8963.
21 Kardon, J.R., and Vale, R.D. (2009). Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell Biol. 10, 854-865.   DOI   ScienceOn
22 Lee, H.S., Cho, S.J., and Moon, I.S. (2014a). The non-canonical effect of N-acetyl-D-glucosamine kinase on the formation of neuronal dendrites. Mol. Cells 37, 248-256.   DOI   ScienceOn
23 Lee, H.S., Dutta, S., and Moon, I.S. (2014b). Upregulation of dendritic arborization by N-acetyl-D-glucosamine kinase is not dependent on its kinase activity. Mol. Cells 37, 322-329   DOI   ScienceOn
24 Merianda, T.T., Lin, A.C., Lam, J.S., Vuppalanchi, D., Willis, D.E., Karin, N., Holt, C.E., and Twiss, J.L. (2009). A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Mol. Cell. Neurosci. 40, 128-142.   DOI   ScienceOn
25 Moon, I.S., Cho, S.J., Jin, I., and Walikonis, R. (2007). A simple method for combined fluorescence in situ hybridization and immunocytochemistry. Mol. Cells 24, 76-82.
26 Ori-McKenney, K.M., Jan, L.Y., and Jan, Y.N. (2012). Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal MT nucleation in neurons. Neuron 76, 921-930.   DOI   ScienceOn
27 Palmer, C.V., Modi, C.K., and Mydlarz, L.D. (2009). Coral Fluorescent Proteins as Antioxidants. PLoS ONE 4(10), e7298.   DOI   ScienceOn
28 Rakic, P., Knyihar-Csillik, E., and Csillik, B. (1996). Polarity of microtubule assemblies during neuronal cell migration. Proc. Natl. Acad. Sci. USA 93, 9218-9222.   DOI
29 Papoulas, O., Hays, T.S., and Sisson, J.C. (2005). The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nat. Cell. Biol. 7, 612-618.   DOI   ScienceOn
30 Pierce, J.P., Mayer, T., and McCarthy, J.B. (2001). Evidence for a satellite secretory pathway in neuronal dendritic spines. Curr. Biol. 11, 351-355.   DOI   ScienceOn
31 Reutter, W., Stasche, R., Stehling, P., and Baum, O. (1997). In Glycosciences, Status and Perspectives, H.J. Gabius, and S. Gabius, eds. (Weinheim, Germany: Chapman and Hall Ltd.), pp. 245-259.
32 Reuter, J.E., Nardine, T.M., Penton, A., Billuart, P., Scott, E.K., Usui, T., Uemura, T., and Luo, L. (2003). A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis. Development 130, 1203-1213.   DOI   ScienceOn
33 Roghi, C., Allan, V.J., Wall, J.S., and Brown, J.C. (1999). Dynamic association of cytoplasmic dynein heavy chain 1a with the Golgi apparatus and intermediate compartment. J. Cell. Sci. 112, 4673-4685.
34 Sainath, R., and Gallo, G. (2014). The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches. Devel. Neurobio. doi: 10.1002/dneu.22246.   DOI   ScienceOn
35 Sakakibara, A., Sato, T., Ando, R., Noguchi, N., Masaoka, M., and Miyata, T. (2014). Dynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization. Cereb. Cortex. 24, 1301-1310.   DOI   ScienceOn
36 Tai, A.W., Chuang, J.Z., and Sung, C.H. (1998). Localization of Tctex-1, a cytoplasmic dynein light chain, to the Golgi apparatus and evidence for dynein complex heterogeneity. J. Biol. Chem. 273, 19639-19649.   DOI
37 Schachter, H. (2000). The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj. J. 17, 465-483.   DOI   ScienceOn
38 Sharif, S.R., Lee, H.S., Islam, M.A., Seog, D.H., and Moon, I.S. (2015). N-acetyl-D-glucosamine kinase is a component of nuclear speckles and paraspeckles. Mol. Cells 38, 402-408.   DOI   ScienceOn
39 Stokin, G.B., Lillo, C., Falzone, T.L., Brusch, R.G., Rockenstein, E., Mount, S.L., Raman, R., Davies, P., Masliah, E., Williams, D.S., and Goldstein, L.S. (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282-1288.   DOI   ScienceOn
40 Trushina, E., Dyer, R.B., Badger, J.D. 2nd, Ure, D., Eide, L., Tran, D.D., Vrieze, B.T., Legendre-Guillemin, V., McPherson, P.S., Mandavilli, B.S. et al. (2004). Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell. Biol. 24, 8195-8209.   DOI   ScienceOn
41 Van den Steen, P., Rudd, P.M., Dwek, R.A., and Opdenakker, G. (1998). Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol. 33, 151-208.   DOI   ScienceOn
42 Wanschers, B., Van de Vorstenbosch, R., Wijers, M., Wieringa, B., King, S.M., and Fransen, J. (2008). Rab6 family proteins interact with the dynein light chain protein DYNLRB1. Cell. Motil. Cytoskeleton 65, 183-196.   DOI   ScienceOn
43 Watanabe, R., Murakami, Y., Marmor, M.D., Inuoe, N., Maeda, Y., Hino, J., Kangawa, K., Julius, M., and Kinoshita, T. (2000). Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO. J. 19, 4402-4411.   DOI   ScienceOn
44 Yadav, S., Puthenveedu, M.A., and Linstedt, A.D. (2012). Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev. Cell. 23, 153-165.   DOI   ScienceOn
45 Weihofen, W.A., Berger, M., Chen, H., Saenger, W., and Hinderlich, S. (2006). Structures of human N-Acetylglucosamine kinase in two complexes with N-Acetylglucosamine and with ADP/glucose: insights into substrate specificity and regulation. J. Mol. Biol. 364, 388-399.   DOI   ScienceOn
46 Williamson, T.L., and Cleveland, D.W. (1999). Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci. 2, 50-56.   DOI   ScienceOn
47 Wolosker, H., Kline, D., Bian, Y., Blackshaw, S., and Cameron, A.M. (1998). Molecularly cloned mammalian glucosamine-6- phosphate deaminase localizes to transporting epithelium and lacks oscillin activity. FASEB J. 12, 91-99.   DOI